1
|
Dymek S, Jacob L, Pühler A, Kalinowski J. Targeting Transcriptional Regulators Affecting Acarbose Biosynthesis in Actinoplanes sp. SE50/110 Using CRISPRi Silencing. Microorganisms 2024; 13:1. [PMID: 39858769 PMCID: PMC11767292 DOI: 10.3390/microorganisms13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025] Open
Abstract
Acarbose, a pseudo-tetrasaccharide produced by Actinoplanes sp. SE50/110, is an α-glucosidase inhibitor and is used as a medication to treat type 2 diabetes. While the biosynthesis of acarbose has been elucidated, little is known about its regulation. Gene silencing using CRISPRi allows for the identification of potential regulators influencing acarbose formation. For this purpose, two types of CRISPRi vectors were established for application in Actinoplanes sp. SE50/110. The pCRISPomyces2i vector allows for reversible silencing, while the integrative pSETT4i vector provides a rapid screening approach for many targets due to its shorter conjugation time into Actinoplanes sp. These vectors were validated by silencing the known acarbose biosynthesis genes acbB and acbV, as well as their regulator, CadC. The reduction in product formation and the diminished relative transcript abundance of the respective genes served as evidence of successful silencing. The vectors were used to create a CRISPRi-based strain library, silencing 50 transcriptional regulators, to investigate their potential influence in acarbose biosynthesis. These transcriptional regulatory genes were selected from previous experiments involving protein-DNA interaction studies or due to their expression profiles. Eleven genes affecting the yield of acarbose were identified. The CRISPRi-mediated knockdown of seven of these genes significantly reduced acarbose biosynthesis, whereas the knockdown of four genes enhanced acarbose production.
Collapse
Affiliation(s)
- Saskia Dymek
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany; (S.D.); (L.J.)
| | - Lucas Jacob
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany; (S.D.); (L.J.)
| | - Alfred Pühler
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany; (S.D.); (L.J.)
| |
Collapse
|
2
|
Kuhl M, Rückert C, Gläser L, Beganovic S, Luzhetskyy A, Kalinowski J, Wittmann C. Microparticles enhance the formation of seven major classes of natural products in native and metabolically engineered actinobacteria through accelerated morphological development. Biotechnol Bioeng 2021; 118:3076-3093. [PMID: 33974270 DOI: 10.1002/bit.27818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022]
Abstract
Actinobacteria provide a rich spectrum of bioactive natural products and therefore display an invaluable source towards commercially valuable pharmaceuticals and agrochemicals. Here, we studied the use of inorganic talc microparticles (hydrous magnesium silicate, 3MgO·4SiO2 ·H2 O, 10 µm) as a general supplement to enhance natural product formation in this important class of bacteria. Added to cultures of recombinant Streptomyces lividans, talc enhanced production of the macrocyclic peptide antibiotic bottromycin A2 and its methylated derivative Met-bottromycin A2 up to 109 mg L-1 , the highest titer reported so far. Hereby, the microparticles fundamentally affected metabolism. With 10 g L-1 talc, S. lividans grew to 40% smaller pellets and, using RNA sequencing, revealed accelerated morphogenesis and aging, indicated by early upregulation of developmental regulator genes such as ssgA, ssgB, wblA, sigN, and bldN. Furthermore, the microparticles re-balanced the expression of individual bottromycin cluster genes, resulting in a higher macrocyclization efficiency at the level of BotAH and correspondingly lower levels of non-cyclized shunt by-products, driving the production of mature bottromycin. Testing a variety of Streptomyces species, talc addition resulted in up to 13-fold higher titers for the RiPPs bottromycin and cinnamycin, the alkaloid undecylprodigiosin, the polyketide pamamycin, the tetracycline-type oxytetracycline, and the anthramycin-analogs usabamycins. Moreover, talc addition boosted production in other actinobacteria, outside of the genus of Streptomyces: vancomycin (Amycolatopsis japonicum DSM 44213), teicoplanin (Actinoplanes teichomyceticus ATCC 31121), and the angucyclinone-type antibiotic simocyclinone (Kitasatospora sp.). For teicoplanin, the microparticles were even crucial to activate production. Taken together, the use of talc was beneficial in 75% of all tested cases and optimized natural and heterologous hosts forming the substance of interest with clusters under native and synthetic control. Given its simplicity and broad benefits, microparticle-supplementation appears as an enabling technology in natural product research of these most important microbes.
Collapse
Affiliation(s)
- Martin Kuhl
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Selma Beganovic
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
3
|
Teicoplanin biosynthesis: unraveling the interplay of structural, regulatory, and resistance genes. Appl Microbiol Biotechnol 2020; 104:3279-3291. [PMID: 32076781 DOI: 10.1007/s00253-020-10436-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 01/10/2023]
Abstract
Teicoplanin (Tcp) is a clinically relevant glycopeptide antibiotic (GPA) that is produced by the actinobacterium Actinoplanes teichomyceticus. Tcp is a front-line therapy for treating severe infections caused by multidrug-resistant Gram-positive pathogens in adults and infants. In this review, we provide a detailed overview of how Tcp is produced by A. teichomyceticus by describing Tcp biosynthesis, regulation, and resistance. We summarize the knowledge gained from in vivo and in vitro studies to provide an integrated model of teicoplanin biosynthesis. Then, we discuss genetic and nutritional factors that contribute to the regulation of teicoplanin biosynthesis, focusing on those that have been successfully applied for improving teicoplanin production. A current view on teicoplanin self-resistance mechanisms in A. teichomyceticus is given, and we compare the Tcp biosynthetic gene cluster with other glycopeptide gene clusters from actinoplanetes and from unidentified isolates/metagenomics samples. Finally, we provide an outlook for further directions in studying Tcp biosynthesis and regulation.
Collapse
|
4
|
Yushchuk O, Andreo-Vidal A, Marcone GL, Bibb M, Marinelli F, Binda E. New Molecular Tools for Regulation and Improvement of A40926 Glycopeptide Antibiotic Production in Nonomuraea gerenzanensis ATCC 39727. Front Microbiol 2020; 11:8. [PMID: 32038594 PMCID: PMC6985074 DOI: 10.3389/fmicb.2020.00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Genome sequencing has revealed that Nonomuraea spp. represent a still largely unexplored source of specialized metabolites. Nonomuraea gerenzanensis ATCC 39727 is the most studied representative species since it produces the glycopeptide antibiotic (GPA) A40926 – the precursor of the clinically relevant antibiotic dalbavancin, approved by the FDA in 2014 for the treatment of acute skin infections caused by multi-drug resistant Gram-positive pathogens. The clinical relevance of dalbavancin has prompted increased attention on A40926 biosynthesis and its regulation. In this paper, we investigated how to enhance the genetic toolkit for members of the Nonomuraea genus, which have proved quite recalcitrant to genetic manipulation. By constructing promoter-probe vectors, we tested the activity of 11 promoters (heterologous and native) using the GusA reporter system in N. gerenzanensis and in Nonomuraea coxensis; this latter species is phylogenetically distant from N. gerenzanesis and also possesses the genetic potential to produce A40926 or a very similar GPA. Finally, the strongest constitutive promoter analyzed in this study, aac(3)IVp, was used to overexpress the cluster-situated regulatory genes controlling A40926 biosynthesis (dbv3 and dbv4 from N. gerenzanensis and nocRI from N. coxensis) in N. gerenzanensis, and the growth and productivity of the best performing strains were assessed at bioreactor scale using an industrial production medium. Overexpression of positive pathway-specific regulatory genes resulted in a significant increase in the level of A40926 production in N. gerenzanensis, providing a new knowledge-based approach to strain improvement for this valuable glycopeptide antibiotic.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Andres Andreo-Vidal
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Mervyn Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
5
|
Yushchuk O, Homoniuk V, Datsiuk Y, Ostash B, Marinelli F, Fedorenko V. Development of a gene expression system for the uncommon actinomycete Actinoplanes rectilineatus NRRL B-16090. J Appl Genet 2020; 61:141-149. [PMID: 31912451 DOI: 10.1007/s13353-019-00534-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
The urgent need for discovering new bioactive metabolites prompts exploring novel actinobacterial taxa by developing appropriate tools for their genome mining and rational genetic engineering. One promising source of new bioactive natural products is the genus Actinoplanes, a home to filamentous sporangia-forming actinobacteria producing many important specialized metabolites such as teicoplanin, ramoplanin, and acarbose. Here we describe the development of a gene expression system for a new Actinoplanes species, A. rectilineatus (NRRL B-16090), which is a potential producer of moenomycin-like antibiotics. We have determined the optimal conditions for spore formation in A. rectilineatus and a plasmid transfer procedure for its engineering via intergeneric E. coli-A. rectilineatus conjugation. The φC31- and pSG5-based vectors were successfully transferred into A. rectilineatus, but φBT1- and VWB-based vectors were not transferable. Finally, using the glucuronidase reporter system, we assessed the strength of several heterologous promoters for gene expression in A. rectilineatus.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St, Lviv, 79005, Ukraine
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Vitalina Homoniuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St, Lviv, 79005, Ukraine
| | - Yurij Datsiuk
- Department of Physics of Earth, Ivan Franko National University of Lviv, 4 Hrushevskoho st, Lviv, 79005, Ukraine
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St, Lviv, 79005, Ukraine
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St, Lviv, 79005, Ukraine.
| |
Collapse
|
6
|
Schaffert L, März C, Burkhardt L, Droste J, Brandt D, Busche T, Rosen W, Schneiker-Bekel S, Persicke M, Pühler A, Kalinowski J. Evaluation of vector systems and promoters for overexpression of the acarbose biosynthesis gene acbC in Actinoplanes sp. SE50/110. Microb Cell Fact 2019; 18:114. [PMID: 31253141 PMCID: PMC6599336 DOI: 10.1186/s12934-019-1162-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/19/2019] [Indexed: 02/05/2023] Open
Abstract
Background Actinoplanes sp. SE50/110 is a natural producer of acarbose. It has been extensively studied in the last decades, which has led to the comprehensive analysis of the whole genome, transcriptome and proteome. First genetic and microbial techniques have been successfully established allowing targeted genome editing by CRISPR/Cas9 and conjugal transfer. Still, a suitable system for the overexpression of singular genes does not exist for Actinoplanes sp. SE50/110. Here, we discuss, test and analyze different strategies by the example of the acarbose biosynthesis gene acbC. Results The integrative φC31-based vector pSET152 was chosen for the development of an expression system, as for the replicative pSG5-based vector pKC1139 unwanted vector integration by homologous recombination was observed. Since simple gene duplication by pSET152 integration under control of native promoters appeared to be insufficient for overexpression, a promoter screening experiment was carried out. We analyzed promoter strengths of five native and seven heterologous promoters using transcriptional fusion with the gusA gene and glucuronidase assays as well as reverse transcription quantitative PCR (RT-qPCR). Additionally, we mapped transcription starts and identified the promoter sequence motifs by 5′-RNAseq experiments. Promoters with medium to strong expression were included into the pSET152-system, leading to an overexpression of the acbC gene. AcbC catalyzes the first step of acarbose biosynthesis and connects primary to secondary metabolism. By overexpression, the acarbose formation was not enhanced, but slightly reduced in case of strongest overexpression. We assume either disturbance of substrate channeling or a negative feed-back inhibition by one of the intermediates, which accumulates in the acbC-overexpression mutant. According to LC–MS-analysis, we conclude, that this intermediate is valienol-7P. This points to a bottleneck in later steps of acarbose biosynthesis. Conclusion Development of an overexpression system for Actinoplanes sp. SE50/110 is an important step for future metabolic engineering. This system will help altering transcript amounts of singular genes, that can be used to unclench metabolic bottlenecks and to redirect metabolic resources. Furthermore, an essential tool is provided, that can be transferred to other subspecies of Actinoplanes and industrially relevant derivatives. Electronic supplementary material The online version of this article (10.1186/s12934-019-1162-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lena Schaffert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Camilla März
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Lisa Burkhardt
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Julian Droste
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - David Brandt
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Winfried Rosen
- Product Supply, Bayer AG, Friedrich Ebert Str. 217-475, 42117, Wuppertal, Germany
| | - Susanne Schneiker-Bekel
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.,Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Alfred Pühler
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.
| |
Collapse
|
7
|
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2019; 35:575-604. [PMID: 29721572 DOI: 10.1039/c8np00012c] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2018 The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described.
Collapse
|
8
|
Regulation of teicoplanin biosynthesis: refining the roles of tei cluster-situated regulatory genes. Appl Microbiol Biotechnol 2019; 103:4089-4102. [PMID: 30937499 DOI: 10.1007/s00253-019-09789-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023]
Abstract
Teicoplanin is a frontline glycopeptide antibiotic produced by Actinoplanes teichomyceticus. It is used to treat complicated cases of infection, including pediatric ones, caused by Gram-positive pathogens. There is a steady interest in elucidating the genetic mechanisms determining teicoplanin production, as they would help overproduce known teicoplanins and discover novel glycopeptides. Herein, we investigate the transcriptional organization of the tei biosynthetic gene cluster and the roles of the cluster-situated regulatory genes in controlling teicoplanin production and self-resistance in A. teichomyceticus. We demonstrate that the tei cluster is organized into nine polygenic and nine monogenic transcriptional units. Most of tei biosynthetic genes are subjected to StrR-like Tei15* control, which, in turn, appears to be regulated by LuxR-type Tei16*. Expression of the genes conferring teicoplanin self-resistance in A. teichomyceticus is not co-regulated with antibiotic production. The gene tei31*, coding for a putative DNA binding protein, is not expressed under teicoplanin producing conditions and is dispensable for antibiotic production. Finally, phylogenesis reconstruction of the glycopeptide cluster-encoded regulators reveals two main clades of StrR-like regulators. Tei15* and close orthologues form one of these clades; the second clade is composed by orthologues of Bbr and Dbv4, governing the biosynthesis of balhimycin and teicoplanin-like A40926, respectively. In addition, the LuxR-type Tei16* appears unrelated to the LuxR-like Dbv3, which is controlling A40926 biosynthesis. Our results shed new light on teicoplanin biosynthesis regulation and on the evolution of novel and old glycopeptide biosynthetic gene clusters.
Collapse
|
9
|
Liu Y, Wei WP, Ye BC. High GC Content Cas9-Mediated Genome-Editing and Biosynthetic Gene Cluster Activation in Saccharopolyspora erythraea. ACS Synth Biol 2018; 7:1338-1348. [PMID: 29634237 DOI: 10.1021/acssynbio.7b00448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The overexpression of bacterial secondary metabolite biosynthetic enzymes is the basis for industrial overproducing strains. Genome editing tools can be used to further improve gene expression and yield. Saccharopolyspora erythraea produces erythromycin, which has extensive clinical applications. In this study, the CRISPR-Cas9 system was used to edit genes in the S. erythraea genome. A temperature-sensitive plasmid containing the PermE promoter, to drive Cas9 expression, and the Pj23119 and PkasO promoters, to drive sgRNAs, was designed. Erythromycin esterase, encoded by S. erythraea SACE_1765, inactivates erythromycin by hydrolyzing the macrolactone ring. Sequencing and qRT-PCR confirmed that reporter genes were successfully inserted into the SACE_1765 gene. Deletion of SACE_1765 in a high-producing strain resulted in a 12.7% increase in erythromycin levels. Subsequent PermE- egfp knock-in at the SACE_0712 locus resulted in an 80.3% increase in erythromycin production compared with that of wild type. Further investigation showed that PermE promoter knock-in activated the erythromycin biosynthetic gene clusters at the SACE_0712 locus. Additionally, deletion of indA (SACE_1229) using dual sgRNA targeting without markers increased the editing efficiency to 65%. In summary, we have successfully applied Cas9-based genome editing to a bacterial strain, S. erythraea, with a high GC content. This system has potential application for both genome-editing and biosynthetic gene cluster activation in Actinobacteria.
Collapse
Affiliation(s)
- Yong Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Wen-Ping Wei
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou 310014 , Zhejiang , China
| |
Collapse
|
10
|
Old and new glycopeptide antibiotics: From product to gene and back in the post-genomic era. Biotechnol Adv 2018; 36:534-554. [PMID: 29454983 DOI: 10.1016/j.biotechadv.2018.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/22/2018] [Accepted: 02/14/2018] [Indexed: 02/05/2023]
Abstract
Glycopeptide antibiotics are drugs of last resort for treating severe infections caused by multi-drug resistant Gram-positive pathogens. First-generation glycopeptides (vancomycin and teicoplanin) are produced by soil-dwelling actinomycetes. Second-generation glycopeptides (dalbavancin, oritavancin, and telavancin) are semi-synthetic derivatives of the progenitor natural products. Herein, we cover past and present biotechnological approaches for searching for and producing old and new glycopeptide antibiotics. We review the strategies adopted to increase microbial production (from classical strain improvement to rational genetic engineering), and the recent progress in genome mining, chemoenzymatic derivatization, and combinatorial biosynthesis for expanding glycopeptide chemical diversity and tackling the never-ceasing evolution of antibiotic resistance.
Collapse
|
11
|
Zhao Q, Xie H, Peng Y, Wang X, Bai L. Improving acarbose production and eliminating the by-product component C with an efficient genetic manipulation system of Actinoplanes sp. SE50/110. Synth Syst Biotechnol 2017; 2:302-309. [PMID: 29552655 PMCID: PMC5851932 DOI: 10.1016/j.synbio.2017.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 01/31/2023] Open
Abstract
The α-glucosidase inhibitor acarbose is commercially produced by Actinoplanes sp. and used as a potent drug in the treatment of type-2 diabetes. In order to improve the yield of acarbose, an efficient genetic manipulation system for Actinoplanes sp. was established. The conjugation system between E. coli carrying ØC31-derived integrative plasmids and the mycelia of Actinoplanes sp. SE50/110 was optimized by adjusting the parameters of incubation time of mixed culture (mycelia and E. coli), quantity of recipient cells, donor-to-recipient ratio and the concentration of MgCl2, which resulted in a high conjugation efficiency of 29.4%. Using this integrative system, a cloned acarbose biosynthetic gene cluster was introduced into SE50/110, resulting in a 35% increase of acarbose titer from 2.35 to 3.18 g/L. Alternatively, a pIJ101-derived replicating plasmid combined with the counter-selection system CodA(sm) was constructed for gene inactivation, which has a conjugation frequency as high as 0.52%. Meanwhile, almost all 5-flucytosine-resistant colonies were sensitive to apramycin, among which 75% harbored the successful deletion of targeted genes. Using this replicating vector, the maltooligosyltrehalose synthase gene treY responsible for the accumulation of component C was inactivated, and component C was eliminated as detected by LC-MS. Based on an efficient genetic manipulation system, improved acarbose production and the elimination of component C in our work paved a way for future rational engineering of the acarbose-producing strains.
Collapse
Affiliation(s)
| | | | | | | | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Dhakal D, Pokhrel AR, Shrestha B, Sohng JK. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Front Microbiol 2017; 8:1106. [PMID: 28663748 PMCID: PMC5471306 DOI: 10.3389/fmicb.2017.01106] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/31/2017] [Indexed: 12/28/2022] Open
Abstract
Actinobacteria are prolific producers of thousands of biologically active natural compounds with diverse activities. More than half of these bioactive compounds have been isolated from members belonging to actinobacteria. Recently, rare actinobacteria existing at different environmental settings such as high altitudes, volcanic areas, and marine environment have attracted attention. It has been speculated that physiological or biochemical pressures under such harsh environmental conditions can lead to the production of diversified natural compounds. Hence, marine environment has been focused for the discovery of novel natural products with biological potency. Many novel and promising bioactive compounds with versatile medicinal, industrial, or agricultural uses have been isolated and characterized. The natural compounds cannot be directly used as drug or other purposes, so they are structurally modified and diversified to ameliorate their biological or chemical properties. Versatile synthetic biological tools, metabolic engineering techniques, and chemical synthesis platform can be used to assist such structural modification. This review summarizes the latest studies on marine rare actinobacteria and their natural products with focus on recent approaches for structural and functional diversification of such microbial chemicals for attaining better applications.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Anaya Raj Pokhrel
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Biplav Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University Asan-siSouth Korea
| |
Collapse
|
13
|
Yushchuk O, Ostash B, Pham TH, Luzhetskyy A, Fedorenko V, Truman AW, Horbal L. Characterization of the Post-Assembly Line Tailoring Processes in Teicoplanin Biosynthesis. ACS Chem Biol 2016; 11:2254-64. [PMID: 27285718 DOI: 10.1021/acschembio.6b00018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actinoplanes teichomyceticus produces teicoplanin (Tcp), a "last resort" lipoglycopeptide antibiotic used to treat severe multidrug resistant infections such as methicillin-resistant Staphylococcus aureus (MRSA). A number of studies have addressed various steps of Tcp biosynthesis using in vitro assays, although the exact sequence of Tcp peptide core tailoring reactions remained speculative. Here, we describe the generation and analysis of a set of A. teichomyceticus mutant strains that have been used to elucidate the sequence of reactions from the Tcp aglycone to mature Tcp. By combining these results with previously published data, we propose an updated order of post-assembly line tailoring processes in Tcp biosynthesis. We also demonstrate that the acyl-CoA-synthetase Tei13* and the type II thioesterase Tei30* are dispensable for Tcp production. Five Tcp derivatives featuring hitherto undescribed combinations of glycosylation and acylation patterns are described. The generation of strains that produce novel Tcp analogues now provides a platform for the production of additional Tcp-like molecules via combinatorial biosynthesis or chemical derivatization.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department
of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Bohdan Ostash
- Department
of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Thu H. Pham
- Department
of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, United Kingdom
| | - Andriy Luzhetskyy
- Department
of Pharmaceutical Biotechnology, Saarland University, Campus, Saarbrucken, Germany
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Center for Infectious Research (HZI), Saarbrucken, Germany
| | - Victor Fedorenko
- Department
of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Andrew W. Truman
- Department
of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, United Kingdom
| | - Liliya Horbal
- Department
of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
- Department
of Pharmaceutical Biotechnology, Saarland University, Campus, Saarbrucken, Germany
| |
Collapse
|
14
|
Gren T, Ortseifen V, Wibberg D, Schneiker-Bekel S, Bednarz H, Niehaus K, Zemke T, Persicke M, Pühler A, Kalinowski J. Genetic engineering in Actinoplanes sp. SE50/110 − development of an intergeneric conjugation system for the introduction of actinophage-based integrative vectors. J Biotechnol 2016; 232:79-88. [DOI: 10.1016/j.jbiotec.2016.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 01/10/2023]
|
15
|
Ostash B, Yushchuk O, Tistechok S, Mutenko H, Horbal L, Muryn A, Dacyuk Y, Kalinowski J, Luzhetskyy A, Fedorenko V. The adpA-like regulatory gene from Actinoplanes teichomyceticus: in silico analysis and heterologous expression. World J Microbiol Biotechnol 2015; 31:1297-301. [DOI: 10.1007/s11274-015-1882-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 11/29/2022]
|
16
|
Horbal L, Kobylyanskyy A, Truman AW, Zaburranyi N, Ostash B, Luzhetskyy A, Marinelli F, Fedorenko V. The pathway-specific regulatory genes, tei15* and tei16*, are the master switches of teicoplanin production in Actinoplanes teichomyceticus. Appl Microbiol Biotechnol 2014; 98:9295-309. [PMID: 25104028 DOI: 10.1007/s00253-014-5969-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 12/01/2022]
Abstract
Pathogenic antibiotic-resistant bacteria are an unprecedented threat to health care worldwide. The range of antibiotics active against these bacteria is narrow; it includes teicoplanin, a "last resort" drug, which is produced by the filamentous actinomycete Actinoplanes teichomyceticus. In this report, we determine the functions of tei15* and tei16*, pathway-specific regulatory genes that code for StrR- and LuxR-type transcriptional factors, respectively. The products of these genes are master switches of teicoplanin biosynthesis, since their inactivation completely abolished antibiotic production. We show that Tei15* positively regulates the transcription of at least 17 genes in the cluster, whereas the targets of Tei16* still remain unknown. Integration of tei15* or tei16* under the control of the aminoglycoside resistance gene aac(3)IV promoter into attBϕC31 site of the A. teichomyceticus chromosome increased teicoplanin productivity to nearly 1 g/L in TM1 industrial medium. The expression of these genes from the moderate copy number episomal vector pKC1139 led to 3-4 g/L teicoplanin, while under the same conditions, wild type produced approximately 100 mg/L. This shows that a significant increase in teicoplanin production can be achieved by a single step of genetic manipulation of the wild-type strain by increasing the expression of the tei regulatory genes. This confirms that natural product yields can be increased using rational engineering once suitable genetic tools have been developed. We propose that this new technology for teicoplanin overproduction might now be transferred to industrial mutants of A. teichomyceticus.
Collapse
Affiliation(s)
- Liliya Horbal
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang H, Yang L, Wu K, Li G. Rational selection and engineering of exogenous principal sigma factor (σ(HrdB)) to increase teicoplanin production in an industrial strain of Actinoplanes teichomyceticus. Microb Cell Fact 2014; 13:10. [PMID: 24428890 PMCID: PMC3897980 DOI: 10.1186/1475-2859-13-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 01/09/2014] [Indexed: 11/13/2022] Open
Abstract
Background Transcriptional engineering has presented a strong ability of phenotypic improvement in microorganisms. However, it could not be directly applied to Actinoplanes teichomyceticus L-27 because of the paucity of endogenous transcription factors in the strain. In this study, exogenous transcription factors were rationally selected and transcriptional engineering was carried out to increase the productivity of teicoplanin in L-27. Results It was illuminated that the σHrdB molecules shared strong similarity of amino acid sequences among some genera of actinomycetes. Combining this advantage with the ability of transcriptional engineering, exogenous sigma factor σHrdB molecules were rationally selected and engineered to improve L-27. hrdB genes from Actinoplanes missouriensis 431, Micromonospora aurantiaca ATCC 27029 and Salinispora arenicola CNS-205 were selected based on molecular evolutionary analysis. Random mutagenesis, DNA shuffling and point mutation were subsequently performed to generate diversified mutants. A recombinant was identified through screening program, yielding 5.3 mg/ml of teicoplanin, over 2-fold compared to that of L-27. More significantly, the engineered strain presented a good performance in 500-l pilot scale fermentation, which meant its valuable potential application in industry. Conclusions Through rational selection and engineering of exogenous transcriptional factor, we have extended the application of transcriptional engineering. To our knowledge, it is the first time to focus on the related issue. In addition, possessing the advantage of efficient metabolic perturbation in transcription level, this strategy could be useful in analyzing metabolic and physiological mechanisms of strains, especially those with the only information on taxonomy.
Collapse
Affiliation(s)
| | - Liu Yang
- School of Food and Bioengineering, Qilu University of Technology, Jinan 250353, PR China.
| | | | | |
Collapse
|
18
|
Horbal L, Kobylyanskyy A, Yushchuk O, Zaburannyi N, Luzhetskyy A, Ostash B, Marinelli F, Fedorenko V. Evaluation of heterologous promoters for genetic analysis of Actinoplanes teichomyceticus--Producer of teicoplanin, drug of last defense. J Biotechnol 2013; 168:367-72. [PMID: 24161919 DOI: 10.1016/j.jbiotec.2013.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Abstract
Actinoplanes teichomyceticus is the only known producer of the valuable glycopeptide antibiotic teicoplanin. Random mutagenesis and selection were extensively applied to teicoplanin producers, while the gene engineering methods were not used, because of the paucity of genetic tools for A. teichomyceticus. Particularly, availability of promoters of different strength that are functional in Actinoplanes would be very useful for overexpression of beneficial genes. Here we report the use of a glucuronidase reporter system (gusA) for studying transcriptional activity in A. teichomyceticus and describe the behavior of a set of heterologous promoters in this strain. We reveal several elements that exceed in their strength the well-established Streptomyces promoter ermEp, underscoring the utility of the gusA reporter for Actinoplanes sp. Remarkable overproduction of teicoplanin was achieved by constructing strains carrying additional copies of the regulatory gene tcp28 under the control of one of the two most active promoters, moeE5p and actp, discovered in this study.
Collapse
Affiliation(s)
- Liliya Horbal
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st, Lviv 79005, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Genome engineering in actinomycetes using site-specific recombinases. Appl Microbiol Biotechnol 2013; 97:4701-12. [PMID: 23584280 DOI: 10.1007/s00253-013-4866-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 11/27/2022]
Abstract
The rational modification of the actinomycetes genomes has a variety of applications in research, medicine, and biotechnology. The use of site-specific recombinases allows generation of multiple mutations, large DNA deletions, integrations, and inversions and may lead to significant progress in all of these fields. Despite their huge potential, site-specific recombinase-based technologies have primarily been used for simple marker removal from a chromosome. In this review, we summarise the site-specific recombination approaches for genome engineering in various actinomycetes.
Collapse
|