1
|
Botero D, Monk J, Rodríguez Cubillos MJ, Rodríguez Cubillos A, Restrepo M, Bernal-Galeano V, Reyes A, González Barrios A, Palsson BØ, Restrepo S, Bernal A. Genome-Scale Metabolic Model of Xanthomonas phaseoli pv. manihotis: An Approach to Elucidate Pathogenicity at the Metabolic Level. Front Genet 2020; 11:837. [PMID: 32849823 PMCID: PMC7432306 DOI: 10.3389/fgene.2020.00837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/10/2020] [Indexed: 01/05/2023] Open
Abstract
Xanthomonas phaseoli pv. manihotis (Xpm) is the causal agent of cassava bacterial blight, the most important bacterial disease in this crop. There is a paucity of knowledge about the metabolism of Xanthomonas and its relevance in the pathogenic process, with the exception of the elucidation of the xanthan biosynthesis route. Here we report the reconstruction of the genome-scale model of Xpm metabolism and the insights it provides into plant-pathogen interactions. The model, iXpm1556, displayed 1,556 reactions, 1,527 compounds, and 890 genes. Metabolic maps of central amino acid and carbohydrate metabolism, as well as xanthan biosynthesis of Xpm, were reconstructed using Escher (https://escher.github.io/) to guide the curation process and for further analyses. The model was constrained using the RNA-seq data of a mutant of Xpm for quorum sensing (QS), and these data were used to construct context-specific models (CSMs) of the metabolism of the two strains (wild type and QS mutant). The CSMs and flux balance analysis were used to get insights into pathogenicity, xanthan biosynthesis, and QS mechanisms. Between the CSMs, 653 reactions were shared; unique reactions belong to purine, pyrimidine, and amino acid metabolism. Alternative objective functions were used to demonstrate a trade-off between xanthan biosynthesis and growth and the re-allocation of resources in the process of biosynthesis. Important features altered by QS included carbohydrate metabolism, NAD(P)+ balance, and fatty acid elongation. In this work, we modeled the xanthan biosynthesis and the QS process and their impact on the metabolism of the bacterium. This model will be useful for researchers studying host-pathogen interactions and will provide insights into the mechanisms of infection used by this and other Xanthomonas species.
Collapse
Affiliation(s)
- David Botero
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Biología Computacional y Ecología Microbiana, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Jonathan Monk
- Systems Biology Research Group, Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - María Juliana Rodríguez Cubillos
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - Mariana Restrepo
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Vivian Bernal-Galeano
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Universidad de Los Andes, Bogotá, Colombia
- Grupo de Biología Computacional y Ecología Microbiana, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Andrés González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Bernhard Ø. Palsson
- Systems Biology Research Group, Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Silvia Restrepo
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Adriana Bernal
- Laboratory of Molecular Interactions of Agricultural Microbes, LIMMA, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
2
|
Schulte F, Leßmeier L, Voss J, Ortseifen V, Vorhölter FJ, Niehaus K. Regulatory associations between the metabolism of sulfur-containing amino acids and xanthan biosynthesis in Xanthomonas campestris pv. campestris B100. FEMS Microbiol Lett 2019; 366:5289864. [PMID: 30649298 DOI: 10.1093/femsle/fnz005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
The γ-proteobacterium Xanthomonas campestris pv. campestris (Xcc) B100 synthesizes the exopolysaccharide xanthan, a commercially relevant thickening agent produced commonly by industrial scale fermentation. This work was inspired by the observation that methionine is an inhibitor of xanthan formation in growth experiments. Therefore, the global effects of methionine supplementation were characterized through cultivation experiments, genome-wide microarray hybridizations and qRT-PCR. Specific pull down of DNA-binding proteins by using the intergenic regions upstream of xanA, gumB and gumD led to the identification of six transcriptional regulators, among them the LysR-family transcriptional regulator CysB. An insertion mutant of this gene was analyzed by growth experiments, microarray experiments and qRT-PCR. Based on our experimental data, we developed a model that describes the methionine-dependent co-regulation of xanthan and sulfur-containing compounds in Xanthomonas. These data substantially contribute to better understand the impact of methionine as a compound in xanthan production media used in industrial fermentations.
Collapse
Affiliation(s)
- Fabian Schulte
- Department of Proteome and Metabolome Research - Bio27, Faculty of Biology, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Lennart Leßmeier
- Chair of Genetics of Prokaryotes, Faculty of Biology, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Julia Voss
- Department of Proteome and Metabolome Research - Bio27, Faculty of Biology, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Vera Ortseifen
- Department of Proteome and Metabolome Research - Bio27, Faculty of Biology, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Frank-Jörg Vorhölter
- Department of Proteome and Metabolome Research - Bio27, Faculty of Biology, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Karsten Niehaus
- Department of Proteome and Metabolome Research - Bio27, Faculty of Biology, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|