1
|
Chen HH, Zheng QX, Yu F, Xie SR, Jiang JG. Development of a chloroplast expression system for Dunaliella salina. Enzyme Microb Technol 2024; 179:110464. [PMID: 38850682 DOI: 10.1016/j.enzmictec.2024.110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Dunaliella salina is an innovative expression system due to its distinct advantages such as high salt tolerance, low susceptibility to contamination, and the absence of the cell wall. While nuclear transformation has been extensively studied, research on D. salina chloroplast transformation remains in the preliminary stages. In this study, we established an efficient chloroplast expression system for D. salina using Golden Gate assembly. We developed a D. salina toolkit comprising essential components such as chloroplast-specific promoters, terminators, homologous fragments, and various vectors. We confirmed its functionality by expressing the EGFP protein. Moreover, we detailed the methodology of the entire construction process. This expression system enables the specific targeting of foreign genes through simple homologous recombination, resulting in stable expression in chloroplasts. The toolkit achieved a relatively high transformation efficiency within a shorter experimental cycle. Consequently, the construction and utilization of this toolkit have the potential to enhance the efficiency of transgenic engineering in D. salina and advance the development of microalgal biofactories.
Collapse
Affiliation(s)
- Hao-Hong Chen
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China; Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Qian-Xi Zheng
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Fan Yu
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Shan-Rong Xie
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
2
|
Dávalos-Guzmán SD, Martinez-Gutierrez F, Martínez-González L, Quezada-Rivera JJ, Lorenzo-Leal AC, Bach H, Morales-Domínguez JF, Soria-Guerra RE. Antimicrobial activity of the Flo peptide produced in Scenedesmus acutus and Nannochloropsis oculata. World J Microbiol Biotechnol 2023; 39:211. [PMID: 37249711 DOI: 10.1007/s11274-023-03664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
The continuous increase of bacterial pathogen resistance to conventional antibiotics has challenged the research community to develop new antimicrobial strategies. Antimicrobial peptides (AMP) are a promising alternative to combat multidrug-resistant strains compared to conventional antibiotics because of their biocompatibility. In the present study, the Flo peptide, an AMP from the Moringa oleifera tree, was expressed in the chloroplast of the microalgae Nannochloropsis oculata and Scenedesmus acutus. The transgene insertion was verified by PCR amplification, and the homoplasmy was corroborated in spectinomycin-resistant lines. The identification and quantification of the peptide were performed using ELISA. The antimicrobial activity was studied against the Gram-negative Escherichia coli (ATCC 25,922) and Klebsiella pneumoniae (ATCC 700,603). The inflammatory response of the total soluble proteins of transplastomic N. oculata was assessed by measuring secretion of the cytokines IL-6, IL-10, and alpha-tumor necrosis (TNF-α), and cytotoxicity was assessed. These results provide a potential strategy to produce the Flo peptide in microalgae with antibacterial activities.
Collapse
Affiliation(s)
- Saraí Damaris Dávalos-Guzmán
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No.6, Zona Universitaria, San Luis Potosí, C.P. 78210, México
| | - Fidel Martinez-Gutierrez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No.6, Zona Universitaria, San Luis Potosí, C.P. 78210, México
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Luzmila Martínez-González
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No.6, Zona Universitaria, San Luis Potosí, C.P. 78210, México
| | - Jesús Josafath Quezada-Rivera
- Universidad Juárez del Estado de Durango, Av. Universidad s/n, Fracc. Filadelfia, Gómez Palacio, Durango, CP. 35010, México
| | - Ana Cecilia Lorenzo-Leal
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Horacio Bach
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - José Francisco Morales-Domínguez
- Universidad Autónoma de Aguascalientes, Av. Universidad No. 940, Ciudad Universitaria, Aguascalientes, Aguascalientes, C.P. 20100, México
| | - Ruth Elena Soria-Guerra
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No.6, Zona Universitaria, San Luis Potosí, C.P. 78210, México.
| |
Collapse
|
3
|
Rout SS, de Grahl I, Yu X, Reumann S. Production of a viral surface protein in Nannochloropsis oceanica for fish vaccination against infectious pancreatic necrosis virus. Appl Microbiol Biotechnol 2022; 106:6535-6549. [PMID: 36069927 PMCID: PMC9449291 DOI: 10.1007/s00253-022-12106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
Nannochloropsis oceanica is a unicellular oleaginous microalga of emerging biotechnological interest with a sequenced, annotated genome, available transcriptomic and proteomic data, and well-established basic molecular tools for genetic engineering. To establish N. oceanica as a eukaryotic host for recombinant protein synthesis and develop molecular technology for vaccine production, we chose the viral surface protein 2 (VP2) of a pathogenic fish virus that causes infectious pancreatic necrosis as a model vaccine. Upon stable nuclear transformation of N. oceanica strain CCMP1779 with the codon-optimized VP2 gene, a Venus reporter fusion served to evaluate the strength of different endogenous promoters in transformant populations by qPCR and flow cytometry. The highest VP2 yields were achieved for the elongation factor promoter, with enhancer effects by its N-terminal leader sequence. Individual transformants differed in their production capability of reporter-free VP2 by orders of magnitude. When subjecting the best candidates to kinetic analyses of growth and VP2 production in photobioreactors, recombinant protein integrity was maintained until the early stationary growth phase, and a high yield of 4.4% VP2 of total soluble protein was achieved. The maximum yield correlated with multiple integrations of the expression vector into the nuclear genome. The results demonstrate that N. oceanica was successfully engineered to constitute a robust platform for high-level production of a model subunit vaccine. The molecular methodology established here can likely be adapted in a straightforward manner to the production of further vaccines in the same host, allowing their distribution to fish, vertebrates, or humans via a microalgae-containing diet. KEY POINTS: • We engineered N. oceanica for recombinant protein production. • The antigenic surface protein 2 of IPN virus could indeed be expressed in the host. • A high yield of 4.4% VP2 of total soluble protein was achieved in N. oceanica.
Collapse
Affiliation(s)
- Sweta Suman Rout
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Imke de Grahl
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Xiaohong Yu
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
- Zybio Inc, Chongqing Municipality, 400084, China
| | - Sigrun Reumann
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany.
| |
Collapse
|
4
|
Dunaliella salina as a Potential Biofactory for Antigens and Vehicle for Mucosal Application. Processes (Basel) 2022. [DOI: 10.3390/pr10091776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The demand for effective, low-cost vaccines increases research in next-generation biomanufacturing platforms and the study of new vaccine delivery systems (e.g., mucosal vaccines). Applied biotechnology in antigen production guides research toward developing genetic modification techniques in different biological models to achieve the expression of heterologous proteins. These studies are based on various transformation protocols, applied in prokaryotic systems such as Escherichia coli to eukaryotic models such as yeasts, insect cell cultures, animals, and plants, including a particular type of photosynthetic organisms: microalgae, demonstrating the feasibility of recombinant protein expression in these biological models. Microalgae are one of the recombinant protein expression models with the most significant potential and studies in the last decade. Unicellular photosynthetic organisms are widely diverse with biological and growth-specific characteristics. Some examples of the species with commercial interest are Chlamydomonas, Botryococcus, Chlorella, Dunaliella, Haematococcus, and Spirulina. The production of microalgae species at an industrial level through specialized equipment for this purpose allows for proposing microalgae as a basis for producing recombinant proteins at a commercial level. A specie with a particular interest in biotechnology application due to growth characteristics, composition, and protein production capacity is D. salina, which can be cultivated under industrial standards to obtain βcarotene of high interest to humans. D saline currently has advantages over other microalgae species, such as its growth in culture media with a high salt concentration which reduces the risk of contamination, rapid growth, generally considered safe (GRAS), recombinant protein biofactory, and a possible delivery vehicle for mucosal application. This review discusses the status of microalgae D. salina as a platform of expression of recombinant production for its potential mucosal application as a vaccine delivery system, taking an advance on the technology for its production and cultivation at an industrial level.
Collapse
|
5
|
de Grahl I, Reumann S. Stramenopile microalgae as "green biofactories" for recombinant protein production. World J Microbiol Biotechnol 2021; 37:163. [PMID: 34453200 PMCID: PMC8397651 DOI: 10.1007/s11274-021-03126-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/06/2021] [Indexed: 12/23/2022]
Abstract
Photoautotrophic microalgae have become intriguing hosts for recombinant protein production because they offer important advantages of both prokaryotic and eukaryotic expression systems. Advanced molecular tools have recently been established for the biotechnologically relevant group of stramenopile microalgae, particularly for several Nannochloropsis species and diatoms. Strategies for the selection of powerful genetic elements and for optimization of protein production have been reported. Much needed high-throughput techniques required for straight-forward identification and selection of the best expression constructs and transformants have become available and are discussed. The first recombinant proteins have already been produced successfully in stramenopile microalgae and include not only several subunit vaccines but also one antimicrobial peptide, a fish growth hormone, and an antibody. These research results offer interesting future applications in aquaculture and as biopharmaceuticals. In this review we highlight recent progress in genetic technology development for recombinant protein production in the most relevant Nannochloropsis species and diatoms. Diverse realistic biotechnological applications of these proteins are emphasized that have the potential to establish stramenopile algae as sustainable green factories for an economically competitive production of high-value biomolecules.
Collapse
Affiliation(s)
- Imke de Grahl
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany.
| | - Sigrun Reumann
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| |
Collapse
|
6
|
Pivato M, Perozeni F, Licausi F, Cazzaniga S, Ballottari M. Heterologous expression of cyanobacterial Orange Carotenoid Protein (OCP2) as a soluble carrier of ketocarotenoids in Chlamydomonas reinhardtii. ALGAL RES 2021; 55:102255. [PMID: 33777686 PMCID: PMC7610433 DOI: 10.1016/j.algal.2021.102255] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photosynthetic organisms evolved different mechanisms to protect themselves from high irradiances and photodamage. In cyanobacteria, the photoactive Orange Carotenoid-binding Protein (OCP) acts both as a light sensor and quencher of excitation energy. It binds keto-carotenoids and, when photoactivated, interacts with phyco-bilisomes, thermally dissipating the excitation energy absorbed by the latter, and acting as efficient singlet oxygen quencher. Here, we report the heterologous expression of an OCP2 protein from the thermophilic cyanobacterium Fischerella thermalis (FtOCP2) in the model organism for green algae, Chlamydomonas reinhardtii. Robust expression of FtOCP2 was obtained through a synthetic redesigning strategy for optimized expression of the transgene. FtOCP2 expression was achieved both in UV-mediated mutant 4 strain, previously selected for efficient transgene expression, and in a background strain previously engineered for constitutive expression of an endogenous β-carotene ketolase, normally poorly expressed in this species, resulting into astaxanthin and other ketocarotenoids accumulation. Recombinant FtOCP2 was successfully localized into the chloroplast. Upon purification it was possible to demonstrate the formation of holoproteins with different xanthophylls and keto-carotenoids bound, including astaxanthin. Moreover, isolated ketocarotenoid-binding FtOCP2 holoproteins conserved their photoconversion properties. Carotenoids bound to FtOCP2 were thus maintained in solution even in absence of organic solvent. The synthetic biology approach herein reported could thus be considered as a novel tool for improving the solubility of ketocarotenoids produced in green algae, by binding to water-soluble carotenoids binding proteins.
Collapse
|
7
|
Wang K, Gao Z, Wang Y, Meng C, Li J, Qin S, Cui Y. The chloroplast genetic engineering of a unicellular green alga Chlorella vulgaris with two foreign peptides co-expression. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
de Grahl I, Rout SS, Maple-Grødem J, Reumann S. Development of a constitutive and an auto-inducible high-yield expression system for recombinant protein production in the microalga Nannochloropsis oceanica. Appl Microbiol Biotechnol 2020; 104:8747-8760. [PMID: 32902683 PMCID: PMC7502441 DOI: 10.1007/s00253-020-10789-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 01/28/2023]
Abstract
Photoautotrophic microalgae offer a great potential as novel hosts for efficient recombinant protein production. Nannochloropsis oceanica produces an extraordinarily high content of polyunsaturated fatty acids, and its robust growth characteristics, published genome sequence and efficient nuclear transformation make N. oceanica a promising candidate for biotechnological applications. To establish a robust and flexible system for recombinant protein production, we cloned six endogenous, potentially constitutive or inducible promoters from N. oceanica strain CCMP1779 and investigated their strength using monomeric Venus as reporter gene. Microscopic pre-screening of individual transformants revealed that the promoters of elongation factor (EF), tubulin (TUB) and nitrate reductase (NR) enabled high reporter gene expression. Comparative quantitative analyses of transformant populations by flow cytometry and qRT-PCR demonstrated the highest Venus expression from the EF promoter and the NR promoter if extended by an N-terminal 14-amino acid leader sequence. The kinetics of reporter gene expression were analysed during photobioreactor cultivation, achieving Venus yields of 0.3% (for EF) and 4.9% (for NR::LS) of total soluble protein. Since inducible expression systems enable the production of toxic proteins, we developed an auto-induction medium for the NR promoter transformants. By switching the N source from ammonium to nitrate in the presence of low ammonium concentrations, the starting point of Venus induction could be fine-tuned and shifted towards exponential growth phase while maintaining high recombinant protein yields. Taken together, we demonstrate that a model recombinant protein can be produced robustly and at very high levels in N. oceanica not only under constitutive but also under auto-inducible cultivation conditions. KEY POINTS: • Nannochloropsis oceanica might serve as host for recombinant protein production. • Comparative promoter strength analyses were conducted for twelve different constructs. • Robust high-yield recombinant protein production was achieved under constitutive conditions. • The nitrate reductase promoter enabled protein production under auto-induction conditions.
Collapse
Affiliation(s)
- Imke de Grahl
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, D-22609, Hamburg, Germany
| | - Sweta Suman Rout
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, D-22609, Hamburg, Germany
| | - Jodi Maple-Grødem
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, N-4021, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, N-4036, Stavanger, Norway
| | - Sigrun Reumann
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, D-22609, Hamburg, Germany.
| |
Collapse
|
9
|
Cecchin M, Berteotti S, Paltrinieri S, Vigliante I, Iadarola B, Giovannone B, Maffei ME, Delledonne M, Ballottari M. Improved lipid productivity in Nannochloropsis gaditana in nitrogen-replete conditions by selection of pale green mutants. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:78. [PMID: 32336989 PMCID: PMC7175523 DOI: 10.1186/s13068-020-01718-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Nannochloropsis gaditana is a photosynthetic unicellular microalgae considered one of the most interesting marine algae to produce biofuels and food additive due to its rapid growth rate and high lipid accumulation. Although microalgae are attractive platforms for solar energy bioconversion, the overall efficiency of photosynthesis is reduced due to the steep light gradient in photobioreactors. Moreover, accumulation of lipids in microalgae for biofuels production is usually induced in a two-phase cultivation process by nutrient starvation, with additional time and costs associated. In this work, a biotechnological approach was directed for the isolation of strains with improved light penetration in photobioreactor combined with increased lipids productivity. RESULTS Mutants of Nannochloropsis gaditana were obtained by chemical mutagenesis and screened for having both a reduced chlorophyll content per cell and increased affinity for Nile red, a fluorescent dye which binds to cellular lipid fraction. Accordingly, one mutant, called e8, was selected and characterized for having a 30% reduction of chlorophyll content per cell and an almost 80% increase of lipid productivity compared to WT in nutrient-replete conditions, with C16:0 and C18:0 fatty acids being more than doubled in the mutant. Whole-genome sequencing revealed mutations in 234 genes in e8 mutant among which there is a non-conservative mutation in the dgd1 synthase gene. This gene encodes for an enzyme involved in the biosynthesis of DGDG, one of the major lipids found in the thylakoid membrane and it is thus involved in chloroplast biogenesis. Lipid biosynthesis is strongly influenced by light availability in several microalgae species, including Nannochloropsis gaditana: reduced chlorophyll content per cell and more homogenous irradiance in photobioreactor is at the base for the increased lipid productivity observed in the e8 mutant. CONCLUSIONS The results herein obtained presents a promising strategy to produce algal biomass enriched in lipid fraction to be used for biofuel and biodiesel production in a single cultivation process, without the additional complexity of the nutrient starvation phase. Genome sequencing and identification of the mutations introduced in e8 mutant suggest possible genes responsible for the observed phenotypes, identifying putative target for future complementation and biotechnological application.
Collapse
Affiliation(s)
- Michela Cecchin
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Silvia Berteotti
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Stefania Paltrinieri
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Ivano Vigliante
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Unità di Fisiologia Vegetale, Università di Torino, Via Quarello 15/a, 10135 Turin, Italy
| | - Barbara Iadarola
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Barbara Giovannone
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Massimo E. Maffei
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Unità di Fisiologia Vegetale, Università di Torino, Via Quarello 15/a, 10135 Turin, Italy
| | - Massimo Delledonne
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
10
|
Abstract
Microalgae are unicellular organisms that act as the crucial primary producers all over the world, typically found in marine and freshwater environments. Most of them can live photo-autotrophically, reproduce rapidly, and accumulate biomass in a short period efficiently. To adapt to the uninterrupted change of the environment, they evolve and differentiate continuously. As a result, some of them evolve special abilities such as toleration of extreme environment, generation of sophisticated structure to adapt to the environment, and avoid predators. Microalgae are believed to be promising bioreactors because of their high lipid and pigment contents. Genetic engineering technologies have given revolutions in the microalgal industry, which decoded the secrets of microalgal genes, express recombinant genes in microalgal genomes, and largely soar the accumulation of interested components in transgenic microalgae. However, owing to several obstructions, the industry of transgenic microalgae is still immature. Here, we provide an overview to emphasize the advantage and imperfection of the existing transgenic microalgal bioreactors.
Collapse
Affiliation(s)
- Zhi-Cong Liang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ming-Hua Liang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
11
|
LHCSR Expression under HSP70/RBCS2 Promoter as a Strategy to Increase Productivity in Microalgae. Int J Mol Sci 2018; 19:ijms19010155. [PMID: 29303960 PMCID: PMC5796104 DOI: 10.3390/ijms19010155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 12/24/2017] [Accepted: 12/31/2017] [Indexed: 11/17/2022] Open
Abstract
Microalgae are unicellular photosynthetic organisms considered as potential alternative sources for biomass, biofuels or high value products. However, limited biomass productivity is commonly experienced in their cultivating system despite their high potential. One of the reasons for this limitation is the high thermal dissipation of the light absorbed by the outer layers of the cultures exposed to high light caused by the activation of a photoprotective mechanism called non-photochemical quenching (NPQ). In the model organism for green algae Chlamydomonas reinhardtii, NPQ is triggered by pigment binding proteins called light-harvesting-complexes-stress-related (LHCSRs), which are over-accumulated in high light. It was recently reported that biomass productivity can be increased both in microalgae and higher plants by properly tuning NPQ induction. In this work increased light use efficiency is reported by introducing in C. reinhardtii a LHCSR3 gene under the control of Heat Shock Protein 70/RUBISCO small chain 2 promoter in a npq4 lhcsr1 background, a mutant strain knockout for all LHCSR genes. This complementation strategy leads to a low expression of LHCSR3, causing a strong reduction of NPQ induction but is still capable of protecting from photodamage at high irradiance, resulting in an improved photosynthetic efficiency and higher biomass accumulation.
Collapse
|
12
|
Legastelois I, Buffin S, Peubez I, Mignon C, Sodoyer R, Werle B. Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules. Hum Vaccin Immunother 2016; 13:947-961. [PMID: 27905833 DOI: 10.1080/21645515.2016.1260795] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The increasing demand for recombinant vaccine antigens or immunotherapeutic molecules calls into question the universality of current protein expression systems. Vaccine production can require relatively low amounts of expressed materials, but represents an extremely diverse category consisting of different target antigens with marked structural differences. In contrast, monoclonal antibodies, by definition share key molecular characteristics and require a production system capable of very large outputs, which drives the quest for highly efficient and cost-effective systems. In discussing expression systems, the primary assumption is that a universal production platform for vaccines and immunotherapeutics will unlikely exist. This review provides an overview of the evolution of traditional expression systems, including mammalian cells, yeast and E.coli, but also alternative systems such as other bacteria than E. coli, transgenic animals, insect cells, plants and microalgae, Tetrahymena thermophila, Leishmania tarentolae, filamentous fungi, cell free systems, and the incorporation of non-natural amino acids.
Collapse
Affiliation(s)
| | - Sophie Buffin
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | - Isabelle Peubez
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | | | - Régis Sodoyer
- b Technology Research Institute Bioaster , Lyon , France
| | - Bettina Werle
- b Technology Research Institute Bioaster , Lyon , France
| |
Collapse
|
13
|
Cisgenesis and intragenesis in microalgae: promising advancements towards sustainable metabolites production. Appl Microbiol Biotechnol 2016; 100:10225-10235. [DOI: 10.1007/s00253-016-7948-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 11/26/2022]
|