1
|
Mao Y, Zhang W, Fu Z, Liu Y, Chen L, Lian X, Zhuo D, Wu J, Zheng M, Liao C. Versatile Biocatalytic C(sp 3 )-H Oxyfunctionalization for the Site- Selective and Stereodivergent Synthesis of α- and β-Hydroxy Acids. Angew Chem Int Ed Engl 2023; 62:e202305250. [PMID: 37340543 DOI: 10.1002/anie.202305250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
C(sp3 )-H oxyfunctionalization, the insertion of an O-atom into C(sp3 )-H bonds, streamlines the synthesis of complex molecules from easily accessible precursors and represents one of the most challenging tasks in organic chemistry with regard to site and stereoselectivity. Biocatalytic C(sp3 )-H oxyfunctionalization has the potential to overcome limitations inherent to small-molecule-mediated approaches by delivering catalyst-controlled selectivity. Through enzyme repurposing and activity profiling of natural variants, we have developed a subfamily of α-ketoglutarate-dependent iron dioxygenases that catalyze the site- and stereodivergent oxyfunctionalization of secondary and tertiary C(sp3 )-H bonds, providing concise synthetic routes towards four types of 92 α- and β-hydroxy acids with high efficiency and selectivity. This method provides a biocatalytic approach for the production of valuable but synthetically challenging chiral hydroxy acid building blocks.
Collapse
Affiliation(s)
- Yingle Mao
- Chemical Biology Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, 201203, Shanghai, China
| | - Weijie Zhang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Zunyun Fu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Yanqiong Liu
- Chemical Biology Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, 201203, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Lin Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Xin Lian
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Dan Zhuo
- Chemical Biology Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, 201203, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Jiewei Wu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Cangsong Liao
- Chemical Biology Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, 201203, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| |
Collapse
|
2
|
Han L, Chen S, Zhou J. Expression and cloning of catA encoding a catechol 1,2-dioxygenase from the 2,4-D-degrading strain Cupriavidus campinensis BJ71. Prep Biochem Biotechnol 2020; 50:486-493. [PMID: 31900038 DOI: 10.1080/10826068.2019.1709978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Catechol 1,2-dioxygenases catalyze catechol ring-opening, a critical step in the degradation of aromatic compounds. Cupriavidus campinensis BJ71, an efficient 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterial strain, was previously isolated from an environment contaminated with 2,4-D. In this study, catA encoding a catechol 1,2-dioxygenase was cloned from the BJ71 strain. The gene was 939 bp long and encoded a polypeptide of 312 amino acids with a molecular weight of 34 kDa. To investigate its enzymatic characteristics, CatA was heterologously expressed in Escherichia coli. Optimal reaction conditions for the pure enzyme were 35 °C and pH 8.0. The enzyme remained stable within a range of 25 °C-45 °C and pH 6.0-9.0, thus indicating that CatA has wide temperature and pH adaptability. After incubation at 45 °C, the enzyme activity of CatA decreased to 37.12%, but its activity was not affected by incubation at pH 9.0. The pure enzyme was able to use catechol, 4-methyl-catechol and 4-chlorocatechol as substrates. Enzyme kinetic parameters Km and Vmax were 39.97 µM and 10.68 U/mg, respectively. This is the first report of the cloning of a gene encoding a catechol 1,2-dioxygenase from a 2,4-D-degrading bacterial strain.
Collapse
Affiliation(s)
- Lizhen Han
- College of Life Sciences, Guizhou University, Guiyang, China
| | - Sen Chen
- College of Life Sciences, Guizhou University, Guiyang, China
| | - Jing Zhou
- College of Life Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Han L, Zhao D, Li C. Isolation and 2,4-D-degrading characteristics of Cupriavidus campinensis BJ71. Braz J Microbiol 2015; 46:433-41. [PMID: 26273258 PMCID: PMC4507535 DOI: 10.1590/s1517-838246220140211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 10/30/2014] [Indexed: 11/22/2022] Open
Abstract
An indigenous bacterial strain capable of utilizing 2,4-dichlorophenoxyacetic acid as the sole carbon and energy source was isolated from a soil used for grown wheat with a long-term history of herbicide use in Beijing, China. The strain BJ71 was identified as Cupriavidus campinensis based on its 16S rRNA sequence analysis and morphological, physiological, and biochemical characteristics. The degradation characteristics of strain BJ71 were evaluated. The optimal conditions for 2,4-D degradation were as follows: pH 7.0, 30 °C, 3% (v/v) inoculum size, and an initial 2,4-D concentration of 350 mg L(-1). Up to 99.57% of the 2,4-D was degraded under optimal conditions after 6 days of incubation. Strain BJ71 was also able to degrade quizalofop and fluroxypyr. This is the first report of a 2,4-D-degrader containing tfdA gene that can utilize these two herbicides. In a biodegradation experiment, 87.13% and 42.53% of 2,4-D (initial concentration, 350 mg kg(-1)) was degraded in non-sterile and sterilized soil inoculated with BJ71, respectively, after 14 days. The 2,4-D degradation was more rapid in a soil microcosm including BJ71 than in a soil microcosm without BJ71. These results indicate that strain BJ71 is a potential candidate for the bioremediation of soil contaminated with the herbicide 2,4-D.
Collapse
Affiliation(s)
- Lizhen Han
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guiyang, China, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guiyang, China. ; Guizhou University, College of Life Sciences, Guizhou University, Guiyang, China, College of Life Sciences, Guizhou University, Guiyang, China. ; Guizhou University, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Degang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guiyang, China, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guiyang, China. ; Guizhou University, College of Life Sciences, Guizhou University, Guiyang, China, College of Life Sciences, Guizhou University, Guiyang, China. ; Guizhou University, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Cuicui Li
- Guizhou University, College of Life Sciences, Guizhou University, Guiyang, China, College of Life Sciences, Guizhou University, Guiyang, China. ; Guizhou University, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|