1
|
Chen L, Wang XN, Bi HY, Wang GY. Antimicrobial Biosynthetic Potential and Phylogenetic Analysis of Culturable Bacteria Associated with the Sponge Ophlitaspongia sp. from the Yellow Sea, China. Mar Drugs 2022; 20:md20100588. [PMID: 36286412 PMCID: PMC9605435 DOI: 10.3390/md20100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Sponge-derived bacteria are considered to be a promising source of novel drugs, owing to their abundant secondary metabolites that have diverse biological activities. In this study, we explored the antimicrobial biosynthetic potential and phylogenetics of culturable bacteria associated with the sponge Ophlitaspongia sp. from the Yellow Sea, China. Using culture-dependent methods, we obtained 151 bacterial strains, which were then analysed for their antimicrobial activities against seven indicator strains. The results indicate that 94 (62.3%) of the 151 isolated strains exhibited antimicrobial activities and inhibited at least one of the indicator strains. Fifty-two strains were selected for further phylogenetic analysis using 16S rRNA gene sequencing, as well as for the presence of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes. These 52 strains belonged to 20 genera from 18 families in 4 phyla, including Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Five strains with PKS genes and ten strains with NRPS genes were detected. Among them, two strains contained both PKS and NRPS genes. Notoacmeibacter sp. strain HMA008 (class Alphaproteobacteria) exhibited potent antimicrobial activity; thus, whole genome sequencing methods were used to analyse its secondary metabolite biosynthetic gene clusters. The genome of HMA008 contained 12 biosynthetic gene clusters that potentially encode secondary metabolites belonging to compound classes such as non-ribosomal peptides, prodigiosin, terpene, β-lactones, and siderophore, among others. This study indicates that the sponge Ophlitaspongia sp. harbours diverse bacterial strains with antimicrobial properties and may serve as a potential source of bioactive compounds.
Collapse
Affiliation(s)
- Lei Chen
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
- Correspondence: (L.C.); (G.-Y.W.)
| | - Xue-Ning Wang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Yu Bi
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Guang-Yu Wang
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
- Correspondence: (L.C.); (G.-Y.W.)
| |
Collapse
|
2
|
Ding J, Wu B, Chen L. Application of Marine Microbial Natural Products in Cosmetics. Front Microbiol 2022; 13:892505. [PMID: 35711762 PMCID: PMC9196241 DOI: 10.3389/fmicb.2022.892505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
As the market size of the cosmetics industry increases, the safety and effectiveness of new products face higher requirements. The marine environment selects for species of micro-organisms with metabolic pathways and adaptation mechanisms different from those of terrestrial organisms, resulting in their natural products exhibiting unique structures, high diversity, and significant biological activities. Natural products are usually safe and non-polluting. Therefore, considerable effort has been devoted to searching for cosmetic ingredients that are effective, safe, and natural for marine micro-organisms. However, marine micro-organisms can be difficult, or impossible, to culture because of their special environmental requirements. Metagenomics technology can help to solve this problem. Moreover, using marine species to produce more green and environmentally friendly products through biotransformation has become a new choice for cosmetic manufacturers. In this study, the natural products of marine micro-organisms are reviewed and evaluated with respect to various cosmetic applications.
Collapse
Affiliation(s)
- Jinwang Ding
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Baochuan Wu
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Liqun Chen
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- *Correspondence: Liqun Chen,
| |
Collapse
|
3
|
Xu Y, Du X, Yu X, Jiang Q, Zheng K, Xu J, Wang P. Recent Advances in the Heterologous Expression of Biosynthetic Gene Clusters for Marine Natural Products. Mar Drugs 2022; 20:341. [PMID: 35736144 PMCID: PMC9225448 DOI: 10.3390/md20060341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 12/29/2022] Open
Abstract
Marine natural products (MNPs) are an important source of biologically active metabolites, particularly for therapeutic agent development after terrestrial plants and nonmarine microorganisms. Sequencing technologies have revealed that the number of biosynthetic gene clusters (BGCs) in marine microorganisms and the marine environment is much higher than expected. Unfortunately, the majority of them are silent or only weakly expressed under traditional laboratory culture conditions. Furthermore, the large proportion of marine microorganisms are either uncultivable or cannot be genetically manipulated. Efficient heterologous expression systems can activate cryptic BGCs and increase target compound yield, allowing researchers to explore more unknown MNPs. When developing heterologous expression of MNPs, it is critical to consider heterologous host selection as well as genetic manipulations for BGCs. In this review, we summarize current progress on the heterologous expression of MNPs as a reference for future research.
Collapse
Affiliation(s)
- Yushan Xu
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Xinhua Du
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Xionghui Yu
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Qian Jiang
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Kaiwen Zheng
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Jinzhong Xu
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
| | - Pinmei Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China; (Y.X.); (X.D.); (X.Y.); (Q.J.); (K.Z.); (J.X.)
- State Key Laboratory of Motor Vehicle Biofuel Technology, Zhejiang University, Zhoushan 316021, China
| |
Collapse
|
4
|
Haloalkaline Lipase from Bacillus flexus PU2 Efficiently Inhibits Biofilm Formation of Aquatic Pathogen Vibrio parahaemolyticus. Probiotics Antimicrob Proteins 2022; 14:664-674. [DOI: 10.1007/s12602-022-09908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 10/18/2022]
|
5
|
Shahraki MF, Atanaki FF, Ariaeenejad S, Ghaffari MR, Norouzi‐Beirami MH, Maleki M, Salekdeh GH, Kavousi K. A computational learning paradigm to targeted discovery of biocatalysts from metagenomic data: a case study of lipase identification. Biotechnol Bioeng 2022; 119:1115-1128. [DOI: 10.1002/bit.28037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/18/2021] [Accepted: 12/01/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Mehdi Foroozandeh Shahraki
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran Tehran Iran
| | - Fereshteh Fallah Atanaki
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran Tehran Iran
| | - Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO) Karaj Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO) Karaj Iran
| | - Mohammad Hossein Norouzi‐Beirami
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran Tehran Iran
- Department of Computer Engineering Osku Branch, Islamic Azad University Osku Iran
| | - Morteza Maleki
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO) Karaj Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO) Karaj Iran
- Department of Molecular Sciences Macquarie University Sydney NSW Australia
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran Tehran Iran
| |
Collapse
|
6
|
Kumar A, Mukhia S, Kumar R. Industrial applications of cold-adapted enzymes: challenges, innovations and future perspective. 3 Biotech 2021; 11:426. [PMID: 34567931 DOI: 10.1007/s13205-021-02929-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Extreme cold environments are potential reservoirs of microorganisms producing unique and novel enzymes in response to environmental stress conditions. Such cold-adapted enzymes prove to be valuable tools in industrial biotechnology to meet the increasing demand for efficient biocatalysts. The inherent properties like high catalytic activity at low temperature, high specific activity and low activation energy make the cold-adapted enzymes well suited for application in various industries. The interest in this group of enzymes is expanding as they are the preferred alternatives to harsh chemical synthesis owing to their biodegradable and non-toxic nature. Irrespective of the multitude of applications, the use of cold-adapted enzymes at the industrial level is still limited. The current review presents the unique adaptive features and the role of cold-adapted enzymes in major industries like food, detergents, molecular biology and bioremediation. The review highlights the significance of omics technology i.e., metagenomics, metatranscriptomics and metaproteomics in enzyme bioprospection from extreme environments. It further points out the challenges in using cold-adapted enzymes at the industrial level and the innovations associated with novel enzyme prospection strategies. Documentations on cold-adapted enzymes and their applications are abundant; however, reports on the role of omics tools in exploring cold-adapted enzymes are still scarce. So, the review covers the aspect concerning the novel techniques for enzyme discovery from nature.
Collapse
Affiliation(s)
- Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002 India
| | - Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
| |
Collapse
|
7
|
Yao W, Liu K, Liu H, Jiang Y, Wang R, Wang W, Wang T. A Valuable Product of Microbial Cell Factories: Microbial Lipase. Front Microbiol 2021; 12:743377. [PMID: 34616387 PMCID: PMC8489457 DOI: 10.3389/fmicb.2021.743377] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
As a powerful factory, microbial cells produce a variety of enzymes, such as lipase. Lipase has a wide range of actions and participates in multiple reactions, and they can catalyze the hydrolysis of triacylglycerol into its component free fatty acids and glycerol backbone. Lipase exists widely in nature, most prominently in plants, animals and microorganisms, among which microorganisms are the most important source of lipase. Microbial lipases have been adapted for numerous industrial applications due to their substrate specificity, heterogeneous patterns of expression and versatility (i.e., capacity to catalyze reactions at the extremes of pH and temperature as well as in the presence of metal ions and organic solvents). Now they have been introduced into applications involving the production and processing of food, pharmaceutics, paper making, detergents, biodiesel fuels, and so on. In this mini-review, we will focus on the most up-to-date research on microbial lipases and their commercial and industrial applications. We will also discuss and predict future applications of these important technologies.
Collapse
Affiliation(s)
- Wentao Yao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
8
|
Abdelaleem ER, Samy MN, Abdelmohsen UR, Desoukey SY. Natural products potential of Dictyoceratida sponges-associated micro-organisms. Lett Appl Microbiol 2021; 74:8-16. [PMID: 34496057 DOI: 10.1111/lam.13559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 05/30/2021] [Accepted: 09/01/2021] [Indexed: 11/27/2022]
Abstract
The marine environment represents one of the most underexplored environments in the world. Marine sponges have a higher taxonomic diversity according to definite environmental conditions. They have been considered interesting sources for bioactive compounds. Dictyoceratida sponges are divided into five families which are widely distributed and habituating different types of micro-organisms. However, some secondary metabolites are probably not produced by the sponges themselves, but rather by their associated micro-organisms. These secondary metabolites are characterized by different chemical structures and consequently different biological activities. This review outlines the reported secondary metabolites from micro-organisms associated with Dictyoceratida sponges and their investigated biological activities from 1991 to 2019. The increasing research studies in this field can play a major role in marine microbial natural products drug discovery in the future.
Collapse
Affiliation(s)
- E R Abdelaleem
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - M N Samy
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - U R Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia, Egypt
| | - S Y Desoukey
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
9
|
de Oliveira BFR, Carr CM, Dobson ADW, Laport MS. Harnessing the sponge microbiome for industrial biocatalysts. Appl Microbiol Biotechnol 2020; 104:8131-8154. [PMID: 32827049 DOI: 10.1007/s00253-020-10817-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
Within the marine sphere, host-associated microbiomes are receiving growing attention as prolific sources of novel biocatalysts. Given the known biocatalytic potential of poriferan microbial inhabitants, this review focuses on enzymes from the sponge microbiome, with special attention on their relevant properties and the wide range of their potential biotechnological applications within various industries. Cultivable bacterial and filamentous fungal isolates account for the majority of the enzymatic sources. Hydrolases, mainly glycoside hydrolases and carboxylesterases, are the predominant reported group of enzymes, with varying degrees of tolerance to alkaline pH and growing salt concentrations being common. Prospective areas for the application of these microbial enzymes include biorefinery, detergent, food and effluent treatment industries. Finally, alternative strategies to identify novel biocatalysts from the sponge microbiome are addressed, with an emphasis on modern -omics-based approaches that are currently available in the enzyme research arena. By providing this current overview of the field, we hope to not only increase the appetite of researchers to instigate forthcoming studies but also to stress how basic and applied research can pave the way for new biocatalysts from these symbiotic microbial communities in a productive fashion. KEY POINTS: • The sponge microbiome is a burgeoning source of industrial biocatalysts. • Sponge microbial enzymes have useful habitat-related traits for several industries. • Strategies are provided for the future discovery of microbial enzymes from sponges.
Collapse
Affiliation(s)
- Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,School of Microbiology, University College Cork, Cork, Ireland.
| | - Clodagh M Carr
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Almeida JM, Alnoch RC, Souza EM, Mitchell DA, Krieger N. Metagenomics: Is it a powerful tool to obtain lipases for application in biocatalysis? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140320. [PMID: 31756433 DOI: 10.1016/j.bbapap.2019.140320] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
In recent years, metagenomic strategies have been widely used to isolate and identify new enzymes from uncultivable components of microbial communities. Among these enzymes, various lipases have been obtained from metagenomic libraries from different environments and characterized. Although many of these lipases have characteristics that could make them interesting for application in biocatalysis, relatively little work has been done to evaluate their potential to catalyze industrially important reactions. In the present article, we highlight the latest research on lipases obtained through metagenomic tools, focusing on studies of activity and stability and investigations of application in biocatalysis. We also discuss the challenges of metagenomic approaches for the bioprospecting of new lipases.
Collapse
Affiliation(s)
- Janaina Marques Almeida
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Robson Carlos Alnoch
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Emanuel Maltempi Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - David Alexander Mitchell
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Nadia Krieger
- Departamento de Química, Universidade Federal do Paraná, Cx.P. 19032 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil.
| |
Collapse
|
11
|
Zhang Y, Simpson BK. Food-related transglutaminase obtained from fish/shellfish. Crit Rev Food Sci Nutr 2019; 60:3214-3232. [DOI: 10.1080/10408398.2019.1681357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yi Zhang
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Québec, Canada
| | - Benjamin K. Simpson
- Department of Food Science and Agricultural Chemistry, McGill University, Québec, Québec, Canada
| |
Collapse
|
12
|
Freitas RCD, Marques HIF, Silva MACD, Cavalett A, Odisi EJ, Silva BLD, Montemor JE, Toyofuku T, Kato C, Fujikura K, Kitazato H, Lima AODS. Evidence of selective pressure in whale fall microbiome proteins and its potential application to industry. Mar Genomics 2019; 45:21-27. [DOI: 10.1016/j.margen.2018.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
|
13
|
Gavin DP, Murphy EJ, Foley AM, Castilla IA, Reen FJ, Woods DF, Collins SG, O'Gara F, Maguire AR. Identification of an Esterase Isolated Using Metagenomic Technology which Displays an Unusual Substrate Scope and its Characterisation as an Enantioselective Biocatalyst. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Declan P. Gavin
- School of Chemistry; Analytical and Biological Chemistry Research Facility; Synthesis and Solid State Pharmaceutical Centre; University College Cork; T12 K8AF Cork Ireland
| | - Edel J. Murphy
- School of Chemistry; Analytical and Biological Chemistry Research Facility; University College Cork; T12 K8AF Cork Ireland
| | - Aoife M. Foley
- School of Chemistry; Analytical and Biological Chemistry Research Facility; Synthesis and Solid State Pharmaceutical Centre; University College Cork; T12 K8AF Cork Ireland
| | - Ignacio Abreu Castilla
- BIOMERIT Research Centre; School of Microbiology; University College Cork; T12 K8AF Cork Ireland
| | - F. Jerry Reen
- School of Microbiology; University College Cork; T12 K8AF Cork Ireland
| | - David F. Woods
- BIOMERIT Research Centre; School of Microbiology; University College Cork; T12 K8AF Cork Ireland
| | - Stuart G. Collins
- School of Chemistry; Analytical and Biological Chemistry Research Facility; Synthesis and Solid State Pharmaceutical Centre; University College Cork; T12 K8AF Cork Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre; School of Microbiology; University College Cork; T12 K8AF Cork Ireland
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute; Curtin University; Perth WA 6102 Australia
- Telethon Kids Institute; Perth WA 6008 Australia
| | - Anita R. Maguire
- School of Chemistry; School of Pharmacy; Analytical and Biological Chemistry Research Facility; Synthesis and Solid State Pharmaceutical Centre; University College Cork; T12 K8AF Cork Ireland
| |
Collapse
|
14
|
Patel N, Rai D, Shahane S, Mishra U. Lipases: Sources, Production, Purification, and Applications. Recent Pat Biotechnol 2019; 13:45-56. [PMID: 30370868 DOI: 10.2174/1872208312666181029093333] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Background and Sources: Lipase enzyme is a naturally occurring enzyme found in the stomach and pancreatic juice. Its function is to digest fats and lipids, helping to maintain correct gallbladder function. Lipase is the one such widely used and versatile enzyme. These enzymes are obtained from animals, plants and as well as from several microorganisms and are sufficiently stable. These are considered as nature's catalysts, but commercially, only microbial lipases are being used significantly. Applications: They found enormous application in the industries of fat and oil processing, oleochemical industry, food industry, detergents, pulp and paper industry, detergents, environment management, tea processing, biosensors and cosmetics and perfumery. Various recent patents related to lipases have been revised in this review. Conclusion: Lipases are very peculiar as they have the ability to hydrolyse fats into fatty acids and glycerols at the water-lipid interface and can reverse the reaction in non-aqueous media. This natural ability makes it the most widely used enzyme in various industrial applications. This article deals with the immense versatility of lipase enzymes along with the recent advancements done in the various fields related to their purification and mass production in industries.
Collapse
Affiliation(s)
- Naveen Patel
- Department of Civil Engineering, NIT Agartala, Agartala-799046, India
| | - Dhananjai Rai
- Department of Civil Engineering, BIET Jhansi, Jhansi-284128, India
| | - Shraddha Shahane
- Department of Civil Engineering, NIT Agartala, Agartala-799046, India
| | - Umesh Mishra
- Department of Civil Engineering, NIT Agartala, Agartala-799046, India
| |
Collapse
|
15
|
Ngara TR, Zhang H. Recent Advances in Function-based Metagenomic Screening. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:405-415. [PMID: 30597257 PMCID: PMC6411959 DOI: 10.1016/j.gpb.2018.01.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/01/2022]
Abstract
Metagenomes from uncultured microorganisms are rich resources for novel enzyme genes. The methods used to screen the metagenomic libraries fall into two categories, which are based on sequence or function of the enzymes. The sequence-based approaches rely on the known sequences of the target gene families. In contrast, the function-based approaches do not involve the incorporation of metagenomic sequencing data and, therefore, may lead to the discovery of novel gene sequences with desired functions. In this review, we discuss the function-based screening strategies that have been used in the identification of enzymes from metagenomes. Because of its simplicity, agar plate screening is most commonly used in the identification of novel enzymes with diverse functions. Other screening methods with higher sensitivity are also employed, such as microtiter plate screening. Furthermore, several ultra-high-throughput methods were developed to deal with large metagenomic libraries. Among these are the FACS-based screening, droplet-based screening, and the in vivo reporter-based screening methods. The application of these novel screening strategies has increased the chance for the discovery of novel enzyme genes.
Collapse
Affiliation(s)
- Tanyaradzwa Rodgers Ngara
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
16
|
Castilla IA, Woods DF, Reen FJ, O'Gara F. Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies. Mar Drugs 2018; 16:E227. [PMID: 29973493 PMCID: PMC6071119 DOI: 10.3390/md16070227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/13/2018] [Accepted: 06/22/2018] [Indexed: 01/24/2023] Open
Abstract
In a demanding commercial world, large-scale chemical processes have been widely utilised to satisfy consumer related needs. Chemical industries are key to promoting economic growth and meeting the requirements of a sustainable industrialised society. The market need for diverse commodities produced by the chemical industry is rapidly expanding globally. Accompanying this demand is an increased threat to the environment and to human health, due to waste produced by increased industrial production. This increased demand has underscored the necessity to increase reaction efficiencies, in order to reduce costs and increase profits. The discovery of novel biocatalysts is a key method aimed at combating these difficulties. Metagenomic technology, as a tool for uncovering novel biocatalysts, has great potential and applicability and has already delivered many successful achievements. In this review we discuss, recent developments and achievements in the field of biocatalysis. We highlight how green chemistry principles through the application of biocatalysis, can be successfully promoted and implemented in various industrial sectors. In addition, we demonstrate how two novel lipases/esterases were mined from the marine environment by metagenomic analysis. Collectively these improvements can result in increased efficiency, decreased energy consumption, reduced waste and cost savings for the chemical industry.
Collapse
Affiliation(s)
- Ignacio Abreu Castilla
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
| | - David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
| | - F Jerry Reen
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
- Telethon Kids Institute, Perth, WA 6008, Australia.
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
17
|
Sarmah N, Revathi D, Sheelu G, Yamuna Rani K, Sridhar S, Mehtab V, Sumana C. Recent advances on sources and industrial applications of lipases. Biotechnol Prog 2017; 34:5-28. [DOI: 10.1002/btpr.2581] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Nipon Sarmah
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| | - D. Revathi
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - G. Sheelu
- Medicinal Chemistry and Pharmacology Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - K. Yamuna Rani
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - S. Sridhar
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - V. Mehtab
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - C. Sumana
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| |
Collapse
|
18
|
Berini F, Casciello C, Marcone GL, Marinelli F. Metagenomics: novel enzymes from non-culturable microbes. FEMS Microbiol Lett 2017; 364:4329276. [DOI: 10.1093/femsle/fnx211] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/02/2017] [Indexed: 01/02/2023] Open
|
19
|
Dos Santos DFK, Istvan P, Quirino BF, Kruger RH. Functional Metagenomics as a Tool for Identification of New Antibiotic Resistance Genes from Natural Environments. MICROBIAL ECOLOGY 2017; 73:479-491. [PMID: 27709246 DOI: 10.1007/s00248-016-0866-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 09/19/2016] [Indexed: 05/26/2023]
Abstract
Antibiotic resistance has become a major concern for human and animal health, as therapeutic alternatives to treat multidrug-resistant microorganisms are rapidly dwindling. The problem is compounded by low investment in antibiotic research and lack of new effective antimicrobial drugs on the market. Exploring environmental antibiotic resistance genes (ARGs) will help us to better understand bacterial resistance mechanisms, which may be the key to identifying new drug targets. Because most environment-associated microorganisms are not yet cultivable, culture-independent techniques are essential to determine which organisms are present in a given environmental sample and allow the assessment and utilization of the genetic wealth they represent. Metagenomics represents a powerful tool to achieve these goals using sequence-based and functional-based approaches. Functional metagenomic approaches are particularly well suited to the identification new ARGs from natural environments because, unlike sequence-based approaches, they do not require previous knowledge of these genes. This review discusses functional metagenomics-based ARG research and describes new possibilities for surveying the resistome in environmental samples.
Collapse
Affiliation(s)
| | - Paula Istvan
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Betania Ferraz Quirino
- Embrapa-Agroenergia, Brasília, DF, Brazil
- Universidade Católica de Brasília, Genomic Sciences and Biotechnology Program, Brasília, DF, Brazil
| | | |
Collapse
|
20
|
|
21
|
Wongwatanapaiboon J, Malilas W, Ruangchainikom C, Thummadetsak G, Chulalaksananukul S, Marty A, Chulalaksananukul W. Overexpression of Fusarium solani lipase in Pichia pastoris and its application in lipid degradation. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1202779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jinaporn Wongwatanapaiboon
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Waraporn Malilas
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
| | - Chalermchai Ruangchainikom
- Environmental Research and Management Department, PTT Research and Technology Institute, PTT Public Company Limited, Ayuthaya, Thailand
| | - Gamgarn Thummadetsak
- Environmental Research and Management Department, PTT Research and Technology Institute, PTT Public Company Limited, Ayuthaya, Thailand
| | - Suphang Chulalaksananukul
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Alain Marty
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- CNRS, UMR5504, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
| | - Warawut Chulalaksananukul
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
22
|
Parages ML, Gutiérrez-Barranquero JA, Reen FJ, Dobson ADW, O'Gara F. Integrated (Meta) Genomic and Synthetic Biology Approaches to Develop New Biocatalysts. Mar Drugs 2016; 14:E62. [PMID: 27007381 PMCID: PMC4810074 DOI: 10.3390/md14030062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 02/18/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years, the marine environment has been the subject of increasing attention from biotechnological and pharmaceutical industries as a valuable and promising source of novel bioactive compounds. Marine biodiscovery programmes have begun to reveal the extent of novel compounds encoded within the enormous bacterial richness and diversity of the marine ecosystem. A combination of unique physicochemical properties and spatial niche-specific substrates, in wide-ranging and extreme habitats, underscores the potential of the marine environment to deliver on functionally novel biocatalytic activities. With the growing need for green alternatives to industrial processes, and the unique transformations which nature is capable of performing, marine biocatalysts have the potential to markedly improve current industrial pipelines. Furthermore, biocatalysts are known to possess chiral selectivity and specificity, a key focus of pharmaceutical drug design. In this review, we discuss how the explosion in genomics based sequence analysis, allied with parallel developments in synthetic and molecular biology, have the potential to fast-track the discovery and subsequent improvement of a new generation of marine biocatalysts.
Collapse
Affiliation(s)
- María L Parages
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - José A Gutiérrez-Barranquero
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
| |
Collapse
|
23
|
Alma'abadi AD, Gojobori T, Mineta K. Marine Metagenome as A Resource for Novel Enzymes. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:290-5. [PMID: 26563467 PMCID: PMC4678775 DOI: 10.1016/j.gpb.2015.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022]
Abstract
More than 99% of identified prokaryotes, including many from the marine environment, cannot be cultured in the laboratory. This lack of capability restricts our knowledge of microbial genetics and community ecology. Metagenomics, the culture-independent cloning of environmental DNAs that are isolated directly from an environmental sample, has already provided a wealth of information about the uncultured microbial world. It has also facilitated the discovery of novel biocatalysts by allowing researchers to probe directly into a huge diversity of enzymes within natural microbial communities. Recent advances in these studies have led to a great interest in recruiting microbial enzymes for the development of environmentally-friendly industry. Although the metagenomics approach has many limitations, it is expected to provide not only scientific insights but also economic benefits, especially in industry. This review highlights the importance of metagenomics in mining microbial lipases, as an example, by using high-throughput techniques. In addition, we discuss challenges in the metagenomics as an important part of bioinformatics analysis in big data.
Collapse
Affiliation(s)
- Amani D Alma'abadi
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Katsuhiko Mineta
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|