1
|
Zhang Z, Ge M, Guo Q, Jiang Y, Jia W, Gao L, Hu J. Ultrahigh-Throughput Screening of High-β-Xylosidase-Producing Penicillium piceum and Investigation of the Novel β-Xylosidase Characteristics. J Fungi (Basel) 2022; 8:jof8040325. [PMID: 35448556 PMCID: PMC9024563 DOI: 10.3390/jof8040325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
A droplet-based microfluidic ultrahigh-throughput screening technology has been developed for the selection of high-β-xylosidase-producing Penicillium piceum W6 from the atmospheric and room-temperature plasma-mutated library of P. piceum. β-xylosidase hyperproducers filamentous fungi, P. piceum W6, exhibited an increase in β-xylosidase activity by 7.1-fold. A novel β-D-xylosidase was purified from the extracellular proteins of P. piceum W6 and designated as PpBXL. The optimal pH and temperature of PpBXL were 4.0 and 70 °C, respectively. PpBXL had high stability an acidic pH range of 3.0-5.0 and exhibited good thermostability with a thermal denaturation half-life of 10 days at 70 °C. Moreover, PpBXL showed the bifunctional activities of α-L-arabinofuranosidase and β-xylosidase. Supplementation with low-dose PpBXL (100 μg/g substrate) improved the yields of glucose and xylose generated from delignified biomass by 36-45%. The synergism between PpBXL and lignocellulolytic enzymes enhanced delignified biomass saccharification, increased the Xyl/Ara ratio, and decreased the strength of hydrogen bonds.
Collapse
Affiliation(s)
- Zhaokun Zhang
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;
| | - Mingyue Ge
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (M.G.); (Q.G.); (Y.J.); (W.J.)
| | - Qi Guo
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (M.G.); (Q.G.); (Y.J.); (W.J.)
| | - Yi Jiang
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (M.G.); (Q.G.); (Y.J.); (W.J.)
| | - Wendi Jia
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (M.G.); (Q.G.); (Y.J.); (W.J.)
| | - Le Gao
- Tianjin Key Laboratory for Industrial BioSystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (M.G.); (Q.G.); (Y.J.); (W.J.)
- Correspondence: (L.G.); (J.H.)
| | - Jianhua Hu
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;
- Correspondence: (L.G.); (J.H.)
| |
Collapse
|
2
|
Fungal Community Analyses of a Pirogue from the Tang Dynasty in the National Maritime Museum of China. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9194129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The goal of this research was to analyze the fungal community responsible for the biodeterioration of a pirogue in the National Maritime Museum of China and to make recommendations for the protection of this artifact. Molecular identification of fungal strains isolated from the surface of the pirogue and the air of the storage room that were most closely related to Cladosporium, Penicillium, Talaromyces and Trichoderma spp. DNA extracted from the samples was sequenced on the Illumina MiSeq platform. The results showed that the predominant fungal genera present were Penicillium sp., Cladosporium sp. and Exophiala sp. Thereafter, cellulose degradation experiments were carried out on the predominant fungi screened by pure culturing. Finally, we tested the sensitivity of the predominant fungal isolates to four biocides. This work suggests that we should pay more attention to Penicillium sp. and Cladosporium sp. in the protection of wooden artifacts, and environmental control is recommended as the main means of protecting the pirogue.
Collapse
|
3
|
Genome sequence of Talaromyces piceus 9-3 provides insights into lignocellulose degradation. 3 Biotech 2017; 7:368. [PMID: 29062678 DOI: 10.1007/s13205-017-1001-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/06/2017] [Indexed: 01/31/2023] Open
Abstract
Many species of Penicillium have exhibited great potential for lignocellulose hydrolysis. The filamentous fungus Talaromyces piceus 9-3 (anamorph: Penicillium piceum), which was isolated from compost wastes in China, was sequenced in this study. Compared with the cellulase producer T. reesei, T. piceus 9-3 processes a lignocellulolytic enzyme system comprising more diverse enzymatic components, especially hemicellulases. This report will facilitate the use of this strain for biomass degradation.
Collapse
|