1
|
Bunbury-Blanchette AL, Fan L, English MM, Kernaghan G. Yeast communities before and after spontaneous fermentation of wine grapes: a case study from Nova Scotia. Can J Microbiol 2023; 69:32-43. [PMID: 36288607 DOI: 10.1139/cjm-2022-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Wine fermentations are generally completed by the domestic yeast Saccharomyces cerevisiae, but many indigenous vineyard yeasts also influence wine flavour and aroma. Despite the flourishing wine industry in Nova Scotia, there has yet to be any systematic evaluation of these yeasts in Atlantic Canada. The yeast communities of pressed L'Acadie blanc grapes sampled from an organic vineyard in the Annapolis Valley in 2018 and 2019 were characterized before and after spontaneous fermentation by both Illumina and PacBio sequencing, to address and compare potential platform biases. Chemical and sensory evaluations were also conducted. Basidiomycete yeasts, including Vishniacozyma carnescens, Filobasidium globisporum, and Curvibasidium cygneicollum, dominated pre-fermentation diversity. Species of Saccharomyces made up ∼0.04% of sequences prior to fermentation, but 85%-100% after fermentation, with some replicates dominated by S. cerevisiae and some by S. uvarum. PacBio sequencing detected high proportions of Hanseniaspora uvarum, while Illumina sequencing did not. A better understanding of Nova Scotia vineyard yeast communities will allow local wine makers to make better use of non-traditional yeasts and spontaneous fermentations to produce high-quality wines unique to the region.
Collapse
Affiliation(s)
- Adele L Bunbury-Blanchette
- Faculty of Graduate Studies and Research, Saint Mary's University, 923 Robie St, Atrium Building, Suite 210, Halifax, NS, Canada
| | - Lihua Fan
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, 32 Main St, Kentville, NS, Canada
| | - Marcia M English
- Department of Human Nutrition, St. Francis-Xavier University, 2320 Notre Dame Ave, J. Bruce Brown Hall 208, Antigonish, NS, Canada
| | - Gavin Kernaghan
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, Canada
| |
Collapse
|
2
|
Wild Saccharomyces Produced Differential Aromas of Fermented Sauvignon Blanc Must. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nine Saccharomyces strains, previously isolated from vineyards in Southern Brazil, were used as starter cultures in fermentations of Sauvignon Blanc (SB) must at laboratory scale, to study inter-strain differences in aroma profiles. The molecular profiles differentiated the following isolates from the reference strain (SC2048), which is typically used in wine production: 06CE, 11CE, 33CE, 01PP, 12M, 13PP, 26PP, 28AD, and 41PP. Under the same conditions, each of these strains produced different concentrations and combinations of metabolites, which significantly influenced the aroma of the fermented SB must. Volatile compounds such as octanoic acid, diethyl succinate, and ethyl lactate were associated with the strains 26PP, 41PP, 01PP, and 12M, while strains 33CE, 28AD, 13PP, and 06CE were associated with the production of ethyl acetate and 1-hexanol. Strain 06CE produced 592.87 ± 12.35 µg/L 1-hexanol. In addition, the olfactory activity values (OAVs; we considered only values >1) allowed us to evaluate the participation of each compound in the aroma of the final fermented SB. In conclusion, the selected wild strains are promising candidates for improving the regional characteristics of wine.
Collapse
|
3
|
Drumonde-Neves J, Čadež N, Reyes-Domínguez Y, Gallmetzer A, Schuller D, Lima T, Pais C, Franco-Duarte R. Clavispora santaluciae f.a., sp. nov., a novel ascomycetous yeast species isolated from grapes. Int J Syst Evol Microbiol 2021; 70:6307-6312. [PMID: 33090949 DOI: 10.1099/ijsem.0.004531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During a study of yeast diversity in Azorean vineyards, four strains were isolated which were found to represent a novel yeast species based on the sequences of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) and of the D1/D2 domain of the large subunit (LSU) rRNA gene, together with their physiological characteristics. An additional strain isolated from Drosophila suzukii in Italy had identical D1/D2 sequences and very similar ITS regions (five nucleotide substitutions) to the Azorean strains. Phylogenetic analysis using sequences of the ITS region and D1/D2 domain showed that the five strains are closely related to Clavispora lusitaniae, although with 56 nucleotide differences in the D2 domain. Intraspecies variation revealed between two and five nucleotide differences, considering the five strains of Clavispora santaluciae. Some phenotypic discrepancies support the separation of the new species from their closely related ones, such as the inability to grow at temperatures above 35 °C, to produce acetic acid and the capacity to assimilate starch. Neither conjugations nor ascospore formation were observed in any of the strains. The name Clavispora santaluciae f.a., sp. nov., is proposed to accommodate the above noted five strains (holotype, CBS 16465T; MycoBank no., MB 835794).
Collapse
Affiliation(s)
- João Drumonde-Neves
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Portugal
- IITAA - Institute of Agricultural and Environmental Research and Technology, University of Azores, Angra do Heroísmo, Portugal
| | - Neža Čadež
- University of Ljubljana Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Dorit Schuller
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Portugal
| | - Teresa Lima
- IITAA - Institute of Agricultural and Environmental Research and Technology, University of Azores, Angra do Heroísmo, Portugal
| | - Célia Pais
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Portugal
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Portugal
| | - Ricardo Franco-Duarte
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Portugal
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Portugal
| |
Collapse
|
4
|
From grape to wine: Fate of ochratoxin A during red, rose, and white winemaking process and the presence of ochratoxin derivatives in the final products. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107167] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Barragán-Castillo YM, Miranda-Castilleja DE, Aldrete-Tapia JA, Arvizu-Medrano SM, Martínez-Peniche RÁ. Native yeast from distinct organs of grapevines established in Queretaro, Mexico, and their potential oenological utilization. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2020. [DOI: 10.1051/ctv/20203501030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The aim of this study was to isolate, identify and determine the oenological potential of yeasts present in Vitis vinifera organs of grapevines established in Queretaro State, Mexico. The yeast distribution was influenced by the organ and the sampling season, and the yeast populations ranged from 0.8 and 5.5 Log CFU/g. A total of 93 yeasts were isolated, identified by RFLP and confirmed by sequencing of the ITS region, prevailing Aureobasidium cf. melanogenum and Basidiomycota yeast. The identified species with previously reported oenological potential were: Pichia cf. kluyveri and Clavispora cf.opuntiae. Remarkably, P. cf. kluyveri 3.1HM showed killer phenotype and was the most tolerant to sulfur dioxide, and survived 72 h after its inoculation in ‘Tempranillo’ must. C. cf. opuntiae 5.7HM showed β-glucosidase activity, the highest tolerance to 5 % ethanol and 25 °Brix (sugar levels). On the contrary, Rhodotorula isolates were not tolerant to stress conditions, and R. mucilaginosa 8HM did not grow under must conditions. Mixed fermentation using H. uvarum NB108/S. cerevisiae N05 resulted in the highest volatile acidity (0.45 g/L acetic acid), while no differences for total acidity, alcohol strength, residual sugars and total SO2 were found between the mixed fermentations treatments. This study provides an insight into the yeast diversity present in grapevines established in Queretaro, Mexico, and the oenological potential of. P. cf. kluyveri 3.1HM.
Collapse
|
6
|
Menolli N, Sánchez-García M. Brazilian fungal diversity represented by DNA markers generated over 20 years. Braz J Microbiol 2020; 51:729-749. [PMID: 31828716 PMCID: PMC7203393 DOI: 10.1007/s42770-019-00206-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022] Open
Abstract
Molecular techniques using fungal DNA barcoding (ITS) and other markers have been key to identifying the biodiversity of different geographic areas, mainly in megadiverse countries. Here, we provide an overview of the fungal diversity in Brazil based on DNA markers of phylogenetic importance generated since 1996. We retrieved fungal sequences of ITS, LSU, SSU, tef1-α, β-tubulin, rpb1, rpb2, actin, chitin synthase, and ATP6 from GenBank using different field keywords that indicated their origin in Brazil. A total of 19,440 sequences were recovered. ITS is the most representative marker (11,209 sequences), with 70.1% belonging to Ascomycota, 18.6% Basidiomycota, 10.2% unidentified, 1.1% Mucoromycota, two sequences of Olpidium bornovanus (Fungi incertae sedis), one sequence of Blastocladiomycota (Allomyces arbusculus), and one sequence of Chytridiomycota (Batrachochytrium dendrobatidis). Considering the sequences of all selected markers, only the phyla Cryptomycota and Entorrhizomycota were not represented. Based on ITS, using a cutoff of 98%, all sequences comprise 3047 OTUs, with the majority being Ascomycota (2088 OTUs) and Basidiomycota (681 OTUs). Previous numbers based mainly on morphological and bibliographical data revealed 5264 fungal species from Brazil, with a predominance of Basidiomycota (2741 spp.) and Ascomycota (1881 spp.). The unidentified ITS sequences not assigned to a higher taxonomic level represent 1.61% of all ITS sequences sampled and correspond to 38 unknown class-level lineages (75% cutoff). A maximum likelihood phylogeny based on LSU illustrates the fungal classes occurring in Brazil.
Collapse
Affiliation(s)
- Nelson Menolli
- Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Câmpus São Paulo, Rua Pedro Vicente 625, São Paulo, SP, 01109-010, Brazil.
- Núcleo de Pesquisa em Micologia, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-012, Brazil.
| | - Marisol Sánchez-García
- Biology Department, Clark University, Worcester, MA, 01610, USA
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75005, Sweden
| |
Collapse
|
7
|
Wang C, Wu C, Qiu S. Yeast diversity investigation of Vitis davidii Föex during spontaneous fermentations using culture-dependent and high-throughput sequencing approaches. Food Res Int 2019; 126:108582. [DOI: 10.1016/j.foodres.2019.108582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/08/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
|
8
|
Freire L, Furtado MM, Guerreiro TM, da Graça JS, da Silva BS, Oliveira DN, Catharino RR, Sant'Ana AS. The presence of ochratoxin A does not influence Saccharomyces cerevisiae growth kinetics but leads to the formation of modified ochratoxins. Food Chem Toxicol 2019; 133:110756. [PMID: 31408721 DOI: 10.1016/j.fct.2019.110756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 01/28/2023]
Abstract
Yeasts are able to reduce the levels of ochratoxin A in fermentative processes; and, through their enzymatic complex, these micro-organisms are also capable of forming modified mycotoxins. These mycotoxins are often underreported, and may increase health risks after ingestion of contaminated food. In this sense, this study aims to evaluate whether the presence of ochratoxin A influences yeast growth kinetic parameters and to elucidate the formation of modified ochratoxin by Saccharomyces cerevisiae strains during fermentation. Three S. cerevisiae strains (12 M, 01 PP, 41 PP) were exposed to OTA at the concentrations of 10, 20 and 30 μg/L. The Baranyi model was fitted to the growth data (Log CFU/mL), and the identification of modified ochratoxins was performed through High Resolution Mass Spectrometry. The presence of ochratoxin A did not influence the growth of S. cerevisiae strains. Four pathways were proposed for the metabolization of OTA: dechlorination, hydrolysis, hydroxylation, and conjugation. Among the elected targets, the following were identified: ochratoxin α, ochratoxin β, ochratoxin α methyl ester, ochratoxin B methyl ester, ethylamide ochratoxin A, ochratoxin C, hydroxy-ochratoxin A, hydroxy-ochratoxin A methyl ester, and ochratoxin A cellobiose ester. These derivatives formed from yeast metabolism may contribute to the occurrence of underreporting levels of total mycotoxin in fermented products.
Collapse
Affiliation(s)
- Luísa Freire
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marianna M Furtado
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Tatiane M Guerreiro
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Juliana S da Graça
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Beatriz S da Silva
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Diogo N Oliveira
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|