1
|
Protachevicz AP, Paulitsch F, Klepa MS, Hainosz J, Olchanheski LR, Hungria M, Stefania da Silva Batista J. Pioneering Desmodium spp. are nodulated by natural populations of stress-tolerant alpha- and beta-rhizobia. Braz J Microbiol 2023; 54:3127-3135. [PMID: 37673840 PMCID: PMC10689651 DOI: 10.1007/s42770-023-01113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
The rhizobia-Desmodium (Leguminosae, Papilionoideae) symbiosis is generally described by its specificity with alpha-rhizobia, especially with Bradyrhizobium. Our study aimed to isolate rhizobia from root nodules of native D. barbatum, D. incanum, and D. discolor, collected in remnants of the biomes of Atlantic Forest and Cerrado in protected areas of the Paraná State, southern Brazil. Based on the 16S rRNA phylogeny, 18 out of 29 isolates were classified as Alphaproteobacteria (Bradyrhizobium and Allorhizobium/Rhizobium) and 11 as Betaproteobacteria (Paraburkholderia). Phylogeny of the recA gene of the alpha-rhizobia resulted in ten main clades, of which two did not group with any described rhizobial species. In the 16S rRNA phylogeny of the beta-rhizobia, Paraburkholderia strains from the same host and conservation unity occupied the same clade. Phenotypic characterization of representative strains revealed the ability of Desmodium rhizobia to grow under stressful conditions such as high temperature, salinity, low pH conditions, and tolerance of heavy metals and xenobiotic compounds. Contrasting with previous reports, our results revealed that Brazilian native Desmodium can exploit symbiotic interactions with stress-tolerant strains of alpha- and beta-rhizobia. Stress tolerance can highly contribute to the ecological success of Desmodium in this phytogeographic region, possibly relating to its pioneering ability in Brazil. We propose Desmodium as a promising model for studies of plant-rhizobia interactions.
Collapse
Affiliation(s)
- Ana Paolla Protachevicz
- Departamento de Biologia Estrutural, Molecular E Genética, Universidade Estadual de Ponta Grossa, C.P. 6001, Ponta Grossa, PR, 84030-900, Brazil
| | - Fabiane Paulitsch
- Departamento de Biologia Estrutural, Molecular E Genética, Universidade Estadual de Ponta Grossa, C.P. 6001, Ponta Grossa, PR, 84030-900, Brazil
| | | | - Jessica Hainosz
- Departamento de Biologia Estrutural, Molecular E Genética, Universidade Estadual de Ponta Grossa, C.P. 6001, Ponta Grossa, PR, 84030-900, Brazil
| | - Luiz Ricardo Olchanheski
- Departamento de Biologia Estrutural, Molecular E Genética, Universidade Estadual de Ponta Grossa, C.P. 6001, Ponta Grossa, PR, 84030-900, Brazil
| | | | - Jesiane Stefania da Silva Batista
- Departamento de Biologia Estrutural, Molecular E Genética, Universidade Estadual de Ponta Grossa, C.P. 6001, Ponta Grossa, PR, 84030-900, Brazil.
| |
Collapse
|
2
|
da Cunha ET, Pedrolo AM, Arisi ACM. Effects of sublethal stress application on the survival of bacterial inoculants: a systematic review. Arch Microbiol 2023; 205:190. [PMID: 37055599 DOI: 10.1007/s00203-023-03542-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
The use of commercial bacterial inoculants formulated with plant-growth promoting bacteria (PGPB) in agriculture has shown significant prominence in recent years due to growth-promotion benefits provided to plants through different mechanisms. However, the survival and viability of bacterial cells in inoculants are affected during use and may decrease their effectiveness. Physiological adaptation strategies have attracted attention to solve the viability problem. This review aims to provide an overview of research on selecting sublethal stress strategies to increase the effectiveness of bacterial inoculants. The searches were performed in November 2021 using Web of Science, Scopus, PubMed, and Proquest databases. The keywords "nitrogen-fixing bacteria", "plant growth-promoting rhizobacteria", "azospirillum", "pseudomonas", "rhizobium", "stress pre-conditioning", "adaptation", "metabolic physiological adaptation", "cellular adaptation", "increasing survival", "protective agent" and "protective strategy" were used in the searches. A total of 2573 publications were found, and 34 studies were selected for a deeper study of the subject. Based on the studies analysis, gaps and potential applications related to sublethal stress were identified. The most used strategies included osmotic, thermal, oxidative, and nutritional stress, and the primary cell response mechanism to stress was the accumulation of osmolytes, phytohormones, and exopolysaccharides (EPS). Under sublethal stress, the inoculant survival showed positive increments after lyophilization, desiccation, and long-term storage processes. The effectiveness of inoculant-plants interaction also had positive increments after sublethal stress, improving plant development, disease control, and tolerance to environmental stresses compared to unappealed inoculants.
Collapse
Affiliation(s)
- Elisandra Triches da Cunha
- CAL CCA UFSC, Food Science and Technology Department, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Florianópolis, SC, 88034-001, Brazil
| | - Ana Marina Pedrolo
- CAL CCA UFSC, Food Science and Technology Department, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Florianópolis, SC, 88034-001, Brazil
| | - Ana Carolina Maisonnave Arisi
- CAL CCA UFSC, Food Science and Technology Department, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Florianópolis, SC, 88034-001, Brazil.
| |
Collapse
|
3
|
Nitrogen-Fixing Symbiotic Paraburkholderia Species: Current Knowledge and Future Perspectives. NITROGEN 2023. [DOI: 10.3390/nitrogen4010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
A century after the discovery of rhizobia, the first Beta-proteobacteria species (beta-rhizobia) were isolated from legume nodules in South Africa and South America. Since then, numerous species belonging to the Burkholderiaceae family have been isolated. The presence of a highly branching lineage of nodulation genes in beta-rhizobia suggests a long symbiotic history. In this review, we focus on the beta-rhizobial genus Paraburkholderia, which includes two main groups: the South American mimosoid-nodulating Paraburkholderia and the South African predominantly papilionoid-nodulating Paraburkholderia. Here, we discuss the latest knowledge on Paraburkholderia nitrogen-fixing symbionts in each step of the symbiosis, from their survival in the soil, through the first contact with the legumes until the formation of an efficient nitrogen-fixing symbiosis in root nodules. Special attention is given to the strain P. phymatum STM815T that exhibits extraordinary features, such as the ability to: (i) enter into symbiosis with more than 50 legume species, including the agriculturally important common bean, (ii) outcompete other rhizobial species for nodulation of several legumes, and (iii) endure stressful soil conditions (e.g., high salt concentration and low pH) and high temperatures.
Collapse
|
4
|
Cellier MFM. Nramp: Deprive and conquer? Front Cell Dev Biol 2022; 10:988866. [PMID: 36313567 PMCID: PMC9606685 DOI: 10.3389/fcell.2022.988866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Solute carriers 11 (Slc11) evolved from bacterial permease (MntH) to eukaryotic antibacterial defense (Nramp) while continuously mediating proton (H+)-dependent manganese (Mn2+) import. Also, Nramp horizontal gene transfer (HGT) toward bacteria led to mntH polyphyly. Prior demonstration that evolutionary rate-shifts distinguishing Slc11 from outgroup carriers dictate catalytic specificity suggested that resolving Slc11 family tree may provide a function-aware phylogenetic framework. Hence, MntH C (MC) subgroups resulted from HGTs of prototype Nramp (pNs) parologs while archetype Nramp (aNs) correlated with phagocytosis. PHI-Blast based taxonomic profiling confirmed MntH B phylogroup is confined to anaerobic bacteria vs. MntH A (MA)’s broad distribution; suggested niche-related spread of MC subgroups; established that MA-variant MH, which carries ‘eukaryotic signature’ marks, predominates in archaea. Slc11 phylogeny shows MH is sister to Nramp. Site-specific analysis of Slc11 charge network known to interact with the protonmotive force demonstrates sequential rate-shifts that recapitulate Slc11 evolution. 3D mapping of similarly coevolved sites across Slc11 hydrophobic core revealed successive targeting of discrete areas. The data imply that pN HGT could advantage recipient bacteria for H+-dependent Mn2+ acquisition and Alphafold 3D models suggest conformational divergence among MC subgroups. It is proposed that Slc11 originated as a bacterial stress resistance function allowing Mn2+-dependent persistence in conditions adverse for growth, and that archaeal MH could contribute to eukaryogenesis as a Mn2+ sequestering defense perhaps favoring intracellular growth-competent bacteria.
Collapse
|
5
|
Gnangui SLE, Fossou RK, Ebou A, Amon CER, Koua DK, Kouadjo CGZ, Cowan DA, Zézé A. The Rhizobial Microbiome from the Tropical Savannah Zones in Northern Côte d'Ivoire. Microorganisms 2021; 9:microorganisms9091842. [PMID: 34576737 PMCID: PMC8472840 DOI: 10.3390/microorganisms9091842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/04/2023] Open
Abstract
Over the past decade, many projects have been initiated worldwide to decipher the composition and function of the soil microbiome, including the African Soil Microbiome (AfSM) project that aims at providing new insights into the presence and distribution of key groups of soil bacteria from across the African continent. In this national study, carried out under the auspices of the AfSM project, we assessed the taxonomy, diversity and distribution of rhizobial genera in soils from the tropical savannah zones in Northern Côte d’Ivoire. Genomic DNA extracted from seven sampled soils was analyzed by sequencing the V4-V5 variable region of the 16S rDNA using Illumina’s MiSeq platform. Subsequent bioinformatic and phylogenetic analyses showed that these soils harbored 12 out of 18 genera of Proteobacteria harboring rhizobia species validly published to date and revealed for the first time that the Bradyrhizobium genus dominates in tropical savannah soils, together with Microvirga and Paraburkholderia. In silico comparisons of different 16S rRNA gene variable regions suggested that the V5-V7 region could be suitable for differentiating rhizobia at the genus level, possibly replacing the use of the V4-V5 region. These data could serve as indicators for future rhizobial microbiome explorations and for land-use decision-making.
Collapse
Affiliation(s)
- Sara Laetitia Elphège Gnangui
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
| | - Romain Kouakou Fossou
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
- Correspondence:
| | - Anicet Ebou
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
- Équipe Bioinformatique, Département de Formation et de Recherche Agriculture et Ressources Animales, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro 1313, Côte d’Ivoire;
| | - Chiguié Estelle Raïssa Amon
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
| | - Dominique Kadio Koua
- Équipe Bioinformatique, Département de Formation et de Recherche Agriculture et Ressources Animales, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro 1313, Côte d’Ivoire;
| | - Claude Ghislaine Zaka Kouadjo
- Laboratoire Central de Biotechnologies, Centre National de la Recherche Agronomique, 01 Abidjan 1740, Côte d’Ivoire;
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| | - Adolphe Zézé
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
| |
Collapse
|
6
|
Dias MAM, Bomfim CSG, Rodrigues DR, da Silva AF, Santos JCS, do Nascimento TR, Martins LMV, Dantas BF, Ribeiro PRDA, de Freitas ADS, Fernandes-Júnior PI. Paraburkholderia spp. are the main rhizobial microsymbionts of Mimosa tenuiflora (Willd.) Poir. in soils of the Brazilian tropical dry forests (Caatinga biome). Syst Appl Microbiol 2021; 44:126208. [PMID: 33992956 DOI: 10.1016/j.syapm.2021.126208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
Mimosa tenuiflora (Willd.) Poir. is widespread in southern and central American drylands, but little information is available concerning its associated rhizobia. Therefore, this study aimed to characterize M. tenuiflora rhizobia from soils of the tropical dry forests (Caatinga) in Pernambuco State, Brazil, at the molecular and symbiotic levels. Soil samples of pristine Caatinga areas in four municipalities were used to grow M. tenuiflora. First, the bacteria from root nodules were subjected to nodC/nifH gene amplification, and the bacteria positive for both genes had the 16S rRNA gene sequenced. Then, ten strains were evaluated using recA, gyrB, and nodC gene sequences, and seven of them had their symbiotic efficiency assessed. Thirty-two strains were obtained and 22 of them were nodC/nifH positive. Twenty strains clustered within Paraburkholderia and two within Rhizobium by 16S rRNA gene sequencing. The beta-rhizobia were similar to P. phenoliruptrix (12) and P. diazotrophica (8). Both alpha-rhizobia were closely related to R. miluonense. The recA + gyrB phylogenetic analysis clustered four and five strains within the P. phenoliruptrix and P. diazotrophica branches, respectively, but they were somewhat divergent to the 16S rRNA phylogeny. For Rhizobium sp. ESA 637, the recA + gyrB phylogeny clustered the strain with R. jaguaris. The nodC phylogeny indicated that ESA 626, ESA 629, and ESA 630 probably represented a new symbiovar branch. The inoculation assay showed high symbiotic efficiency for all tested strains. The results indicated high genetic diversity and efficiency of M. tenuiflora rhizobia in Brazilian drylands and included P. phenoliruptrix-like bacteria in the list of efficient beta-rhizobia in the Caatinga biome.
Collapse
Affiliation(s)
- Marcos André Moura Dias
- Universidade Federal do Vale do São Francisco (Univasf), Colegiado de Farmácia, Petrolina, PE, Brazil
| | | | | | - Aleksandro Ferreira da Silva
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Agronomia, Recife, PE, Brazil; Faculdade UniBras, Departamento de Agronomia, Juazeiro, BA, Brazil
| | | | - Tailane Ribeiro do Nascimento
- Universidade do Estado da Bahia (UNEB), Departamento de Tecnologia e Ciências Sociais, R. Edgard Chastinet, s/n, Juazeiro, BA, Brazil
| | - Lindete Míria Vieira Martins
- Universidade do Estado da Bahia (UNEB), Departamento de Tecnologia e Ciências Sociais, R. Edgard Chastinet, s/n, Juazeiro, BA, Brazil
| | | | - Paula Rose de Almeida Ribeiro
- Embrapa Semiárido, Petrolina, PE, Brazil; Fundação de Amparo à Pesquisa do Estado de Pernambuco (Facepe), Recife, PE, Brazil; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, DF, Brazil
| | | | | |
Collapse
|
7
|
Ochieno DMW, Karoney EM, Muge EK, Nyaboga EN, Baraza DL, Shibairo SI, Naluyange V. Rhizobium-Linked Nutritional and Phytochemical Changes Under Multitrophic Functional Contexts in Sustainable Food Systems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.604396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rhizobia are bacteria that exhibit both endophytic and free-living lifestyles. Endophytic rhizobial strains are widely known to infect leguminous host plants, while some do infect non-legumes. Infection of leguminous roots often results in the formation of root nodules. Associations between rhizobia and host plants may result in beneficial or non-beneficial effects. Such effects are linked to various biochemical changes that have far-reaching implications on relationships between host plants and the dependent multitrophic biodiversity. This paper explores relationships that exist between rhizobia and various plant species. Emphasis is on nutritional and phytochemical changes that occur in rhizobial host plants, and how such changes affect diverse consumers at different trophic levels. The purpose of this paper is to bring into context various aspects of such interactions that could improve knowledge on the application of rhizobia in different fields. The relevance of rhizobia in sustainable food systems is addressed in context.
Collapse
|
8
|
Ramoneda J, Le Roux JJ, Frossard E, Frey B, Gamper HA. Experimental assembly reveals ecological drift as a major driver of root nodule bacterial diversity in a woody legume crop. FEMS Microbiol Ecol 2020; 96:5828728. [PMID: 32364226 DOI: 10.1093/femsec/fiaa083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022] Open
Abstract
Understanding how plant-associated microbial communities assemble and the role they play in plant performance are major goals in microbial ecology. For nitrogen-fixing rhizobia, community assembly is generally driven by host plant selection and soil conditions. Here, we aimed to determine the relative importance of neutral and deterministic processes in the assembly of bacterial communities of root nodules of a legume shrub adapted to extreme nutrient limitation, rooibos (Aspalathus linearis Burm. Dahlgren). We grew rooibos seedlings in soil from cultivated land and wild habitats, and mixtures of these soils, sampled from a wide geographic area, and with a fertilization treatment. Bacterial communities were characterized using next generation sequencing of part of the nodA gene (i.e. common to the core rhizobial symbionts of rooibos), and part of the gyrB gene (i.e. common to all bacterial taxa). Ecological drift alone was a major driver of taxonomic turnover in the bacterial communities of root nodules (62.6% of gyrB communities). In contrast, the assembly of core rhizobial communities (genus Mesorhizobium) was driven by dispersal limitation in concert with drift (81.1% of nodA communities). This agrees with a scenario of rooibos-Mesorhizobium specificity in spatially separated subpopulations, and low host filtering of other bacteria colonizing root nodules in a stochastic manner.
Collapse
Affiliation(s)
- Josep Ramoneda
- Department of Environmental Systems Science, ETH Zurich, Eschikon 33, 8315 Lindau, Zurich, Switzerland
| | - Johannes J Le Roux
- Department of Biological Sciences, Macquarie University, Balaclava Rd, Macquarie Park NSW 2109, Sydney, Australia
| | - Emmanuel Frossard
- Department of Environmental Systems Science, ETH Zurich, Eschikon 33, 8315 Lindau, Zurich, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Hannes Andres Gamper
- Faculty of Science and Technology, Free University of Bolzen-Bolzano,Piazza Università, 1, 39100 Bolzano BZ, Italy
| |
Collapse
|