1
|
Theologidis I, Karamitros T, Vichou AE, Kizis D. Nanopore-Sequencing Metabarcoding for Identification of Phytopathogenic and Endophytic Fungi in Olive ( Olea europaea) Twigs. J Fungi (Basel) 2023; 9:1119. [PMID: 37998924 PMCID: PMC10672464 DOI: 10.3390/jof9111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Metabarcoding approaches for the identification of plant disease pathogens and characterization of plant microbial populations constitute a rapidly evolving research field. Fungal plant diseases are of major phytopathological concern; thus, the development of metabarcoding approaches for the detection of phytopathogenic fungi is becoming increasingly imperative in the context of plant disease prognosis. We developed a multiplex metabarcoding method for the identification of fungal phytopathogens and endophytes in olive young shoots, using the MinION sequencing platform (Oxford Nanopore Technologies). Selected fungal-specific primers were used to amplify three different genomic DNA loci (ITS, beta-tubulin, and 28S LSU) originating from olive twigs. A multiplex metabarcoding approach was initially evaluated using healthy olive twigs, and further assessed with naturally infected olive twig samples. Bioinformatic analysis of basecalled reads was carried out using MinKNOW, BLAST+ and R programming, and results were also evaluated using the BugSeq cloud platform. Data analysis highlighted the approaches based on ITS and their combination with beta-tubulin as the most informative ones according to diversity estimations. Subsequent implementation of the method on symptomatic samples identified major olive pathogens and endophytes including genera such as Cladosporium, Didymosphaeria, Paraconiothyrium, Penicillium, Phoma, Verticillium, and others.
Collapse
Affiliation(s)
- Ioannis Theologidis
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control & Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, 14561 Athens, Attica, Greece
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Attica, Greece
| | - Aikaterini-Eleni Vichou
- Laboratory of Mycology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Street, 14561 Athens, Attica, Greece
| | - Dimosthenis Kizis
- Laboratory of Mycology, Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, 8 St. Delta Street, 14561 Athens, Attica, Greece
| |
Collapse
|
2
|
Tripodi P. Application of High-Resolution Melting and DNA Barcoding for Discrimination and Taxonomy Definition of Rocket Salad ( Diplotaxis spp.) Species. Genes (Basel) 2023; 14:1594. [PMID: 37628645 PMCID: PMC10454437 DOI: 10.3390/genes14081594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Nuclear and cytoplasmic DNA barcoding regions are useful for plant identification, breeding, and phylogenesis. In this study, the genetic diversity of 17 Diplotaxis species, was investigated with 5 barcode markers. The allelic variation was based on the sequences of chloroplast DNA markers including the spacer between trnL and trnF and tRNA-Phe gene (trnL-F), the rubisco (rbcl), the maturase K (matk), as well as the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA. A highly polymorphic marker (HRM500) derived from a comparison of cytoplasmic genome sequences in Brassicaceae, was also included. Subsequently, a real-time PCR method coupled with HRM analysis was implemented to better resolve taxonomic relationships and identify assays suitable for species identification. Integration of the five barcode regions revealed a grouping of the species according to the common chromosomal set number. Clusters including species with n = 11 (D. duveryrieriana or cretacea, D. tenuifolia, D. simplex and D. acris), n = 8 (D. ibicensis, D. brevisiliqua and D. ilorcitana), and n = 9 (D. brachycarpa, D. virgata, D. assurgens, and D. berthautii) chromosomes were identified. Both phylogenetic analysis and the genetic structure of the collection identified D. siifolia as the most distant species. Previous studies emphasized this species' extremely high glucosinolate content, particularly for glucobrassicin. High-resolution melting analysis showed specific curve patterns useful for the discrimination of the species, thus determining ITS1 as the best barcode for fingerprinting. Findings demonstrate that the approach used in this study is effective for taxa investigations and genetic diversity studies.
Collapse
Affiliation(s)
- Pasquale Tripodi
- Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics (CREA), 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
3
|
Kantak M, Batra P, Shende P. Integration of DNA barcoding and nanotechnology in drug delivery. Int J Biol Macromol 2023; 230:123262. [PMID: 36646350 DOI: 10.1016/j.ijbiomac.2023.123262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
In recent years' development in nanotechnology utilization of DNA barcodes with potential benefit of nanoparticulate system is a hallmark for novel advancement in healthcare, biomedical and research sector. Interplay of biological barcoding with nanodimensional system encompasses innovative technologies to offer unique advantages of ultra-sensitivity, error-free, accuracy with minimal label reagents, and less time consumption in comparison to conventional techniques like ELISA, PCR, culture media, electrophoresis. DNA barcoding systems used as universal novel tool for identification and multiplex structural detection of proteins, DNAs, toxins, allergens, and nucleic acids of humans, viruses, animals, bacteria, plants as well as personalized treatment in ovarian cancer, AIDS-related Kaposi sarcoma, breast cancer and cardiovascular diseases. Barcoding tools offer substantial attention in drug delivery, in-vivo screening, gene transport for theranostics, bioimaging, and nano-biosensors applications. This review article outlines the recent advances in nano-mediated DNA barcodes to explore various applications in detection of cancer markers, tumor cells, pathogens, allergens, as theranostics, biological sensors, and plant authentication. Furthermore, it summarizes the diverse newer technologies such as bio-barcode amplification (BBA), Profiling Relative Inhibition Simultaneously in Mixtures (PRISM) and CRISPR-Cas9 gene knockout and their applications as sensors for detections of antigens, allergens, and other specimens.
Collapse
Affiliation(s)
- Maithili Kantak
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Priyanka Batra
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
4
|
Martín I, Gálvez L, Guasch L, Palmero D. Fungal Pathogens and Seed Storage in the Dry State. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223167. [PMID: 36432896 PMCID: PMC9697778 DOI: 10.3390/plants11223167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 05/27/2023]
Abstract
Seeds can harbor a wide range of microorganisms, especially fungi, which can cause different sanitary problems. Seed quality and seed longevity may be drastically reduced by fungi that invade seeds before or after harvest. Seed movement can be a pathway for the spread of diseases into new areas. Some seed-associated fungi can also produce mycotoxins that may cause serious negative effects on humans, animals and the seeds themselves. Seed storage is the most efficient and widely used method for conserving plant genetic resources. The seed storage conditions used in gene banks, low temperature and low seed moisture content, increase seed longevity and are usually favorable for the survival of seed-borne mycoflora. Early detection and identification of seed fungi are essential activities to conserve high-quality seeds and to prevent pathogen dissemination. This article provides an overview of the characteristics and detection methods of seed-borne fungi, with a special focus on their potential effects on gene bank seed conservation. The review includes the following aspects: types of seed-borne fungi, paths of infection and transmission, seed health methods, fungi longevity, risk of pathogen dissemination, the effect of fungi on seed longevity and procedures to reduce the harmful effects of fungi in gene banks.
Collapse
Affiliation(s)
- Isaura Martín
- Plant Genetic Resource Centre (CRF), National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28805 Alcalá de Henares, Spain
| | - Laura Gálvez
- Department of Agricultural Production, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 4, 28040 Madrid, Spain
| | - Luis Guasch
- Plant Genetic Resource Centre (CRF), National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28805 Alcalá de Henares, Spain
| | - Daniel Palmero
- Department of Agricultural Production, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 4, 28040 Madrid, Spain
| |
Collapse
|
5
|
Bakhshi M, Ebrahimi L, Zare R, Arzanlou M, Kermanian M. Development of a Novel Diagnostic Tool for Cercospora Species Based on BOX-PCR System. Curr Microbiol 2022; 79:290. [PMID: 35972567 DOI: 10.1007/s00284-022-02989-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
The genus Cercospora contains many devastating plant pathogens linked to leaf spot diseases afflicting various plants. Identification of Cercospora species based on morphology or host plant association has proven unreliable due to simple morphology and wide host range in many cases; hence, multi-gene DNA sequence data are essential for accurate species identification. Considering the complexity and cost involved in application of multi-locus DNA phylogenetic approaches for species delineation in Cercospora; rapid and cost-effective methods are urgently needed for species recognition. In this study, we applied rep-PCR (repetitive-sequence based polymerase chain reaction) fingerprinting methods referred to as BOX-PCR to differentiate species of Cercospora. Cluster analysis of the banding patterns of 52 Cercospora strains indicated the ability of BOX-PCR technique using BOXA1R primer to generate species-specific DNA fingerprints from all the tested strains. Since this technique was able to discriminate between all the 20 examined Cercospora species during this study, which corresponded well to the species identified based on multi-gene DNA sequence data, our findings revealed the efficiency of BOX-PCR system as a suitable complementary method for molecular identification of the genus Cercospora at species level.
Collapse
Affiliation(s)
- Mounes Bakhshi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran.
| | - Leila Ebrahimi
- Department of Entomology and Plant Pathology, College of Aburaihan, University of Tehran, Tehran, 33916-53755, Iran
| | - Rasoul Zare
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
| | - Mahdi Arzanlou
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Milad Kermanian
- Department of Entomology and Plant Pathology, College of Aburaihan, University of Tehran, Tehran, 33916-53755, Iran
| |
Collapse
|
6
|
Current and Future Pathotyping Platforms for Plasmodiophora brassicae in Canada. PLANTS 2021; 10:plants10071446. [PMID: 34371649 PMCID: PMC8309272 DOI: 10.3390/plants10071446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is one of the most detrimental threats to crucifers worldwide and has emerged as an important disease of canola (Brassica napus) in Canada. At present, pathotypes are distinguished phenotypically by their virulence patterns on host differential sets, including the systems of Williams, Somé et al., the European Clubroot Differential set, and most recently the Canadian Clubroot Differential set and the Sinitic Clubroot Differential set. Although these are frequently used because of their simplicity of application, they are time-consuming, labor-intensive, and can lack sensitivity. Early, preventative pathotype detection is imperative to maximize productivity and promote sustainable crop production. The decreased turnaround time and increased sensitivity and specificity of genotypic pathotyping will be valuable for the development of integrated clubroot management plans, and interest in molecular techniques to complement phenotypic methods is increasing. This review provides a synopsis of current and future molecular pathotyping platforms for P. brassicae and aims to provide information on techniques that may be most suitable for the development of rapid, reliable, and cost-effective pathotyping assays.
Collapse
|
7
|
Shurson GC, Urriola PE, van de Ligt JLG. Can we effectively manage parasites, prions, and pathogens in the global feed industry to achieve One Health? Transbound Emerg Dis 2021; 69:4-30. [PMID: 34171167 DOI: 10.1111/tbed.14205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022]
Abstract
Prions and certain endoparasites, bacteria, and viruses are internationally recognized as types of disease-causing biological agents that can be transmitted from contaminated feed to animals. Historically, foodborne biological hazards such as prions (transmissible spongiform encephalopathy), endoparasites (Trichinella spiralis, Toxoplasma gondii), and pathogenic bacteria (Salmonella spp., Listeria monocytogenes, Escherichia coli O157, Clostridium spp., and Campylobacter spp.) were major food safety concerns from feeding uncooked or improperly heated animal-derived food waste and by-products. However, implementation of validated thermal processing conditions along with verifiable quality control procedures has been effective in enabling safe use of these feed materials in animal diets. More recently, the occurrence of global Porcine Epidemic Diarrhea Virus and African Swine Fever Virus epidemics, dependence on international feed ingredient supply chains, and the discovery that these viruses can survive in some feed ingredient matrices under environmental conditions of trans-oceanic shipments has created an urgent need to develop and implement rigorous biosecurity protocols that prevent and control animal viruses in feed ingredients. Implementation of verifiable risk-based preventive controls, traceability systems from origin to destination, and effective mitigation procedures is essential to minimize these food security, safety, and sustainability threats. Creating a new biosafety and biosecurity framework will enable convergence of the diverging One Health components involving low environmental impact and functional feed ingredients that are perceived as having elevated biosafety risks when used in animal feeds.
Collapse
Affiliation(s)
- Gerald C Shurson
- Department of Animal Science, College of Food Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Pedro E Urriola
- Department of Animal Science, College of Food Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Jennifer L G van de Ligt
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|