1
|
Swain SK, Panda S, Sahu BP, Mahapatra SR, Dey J, Sarangi R, Misra N. Inferring B-cell derived T-cell receptor induced multi-epitope-based vaccine candidate against enterovirus 71: a reverse vaccinology approach. Clin Exp Vaccine Res 2024; 13:132-145. [PMID: 38752008 PMCID: PMC11091429 DOI: 10.7774/cevr.2024.13.2.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/30/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose Enterovirus 71, a pathogen that causes hand-foot and mouth disease (HFMD) is currently regarded as an increasing neurotropic virus in Asia and can cause severe complications in pediatric patients with blister-like sores or rashes on the hand, feet, and mouth. Notwithstanding the significant burden of the disease, no authorized vaccine is available. Previously identified attenuated and inactivated vaccines are worthless over time owing to changes in the viral genome. Materials and Methods A novel vaccine construct using B-cell derived T-cell epitopes from the virulent polyprotein found the induction of possible immune response. In order to boost the immune system, a beta-defensin 1 preproprotein adjuvant with EAAAK linker was added at the N-terminal end of the vaccine sequence. Results The immunogenicity of the designed, refined, and verified prospective three-dimensional-structure of the multi-epitope vaccine was found to be quite high, exhibiting non-allergenic and antigenic properties. The vaccine candidates bound to toll-like receptor 3 in a molecular docking analysis, and the efficacy of the potential vaccine to generate a strong immune response was assessed through in silico immunological simulation. Conclusion Computational analysis has shown that the proposed multi-epitope vaccine is possibly safe for use in humans and can elicit an immune response.
Collapse
Affiliation(s)
- Subrat Kumar Swain
- Department of Medical Research, IMS and SUM Hospital, Siksha “O” Anusandhan Deemed to be University, Bhubaneswar, India
| | - Subhasmita Panda
- Department of Pediatrics, IMS and SUM Hospital, Siksha “O” Anusandhan Deemed to be University, Bhubaneswar, India
| | - Basanta Pravas Sahu
- School of Biological Science, The University of Hong Kong, Hong Kong
- Decipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Rachita Sarangi
- Department of Pediatrics, IMS and SUM Hospital, Siksha “O” Anusandhan Deemed to be University, Bhubaneswar, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| |
Collapse
|
2
|
Debroy R, Ramaiah S. Translational protein RpsE as an alternative target for novel nucleoside analogues to treat MDR Enterobacter cloacae ATCC 13047: network analysis and molecular dynamics study. World J Microbiol Biotechnol 2023; 39:187. [PMID: 37150764 PMCID: PMC10164620 DOI: 10.1007/s11274-023-03634-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
The pathogenic Enterobacter cloacae subsp. cloacae str. ATCC 13047 has contemporarily emerged as a multi-drug resistant strain. To formulate an effective treatment option, alternative therapeutic methods need to be explored. The present study focused on Gene Interaction Network study of 46 antimicrobial resistance genes to reveal the densely interconnecting and functional hub genes in E. cloacae ATCC 13047. The AMR genes were subjected to clustering, topological and functional enrichment analysis, revealing rpsE (RpsE), acrA (AcrA) and arnT (ArnT) as novel therapeutic drug targets for hindering drug resistance in the pathogenic strain. Network topology further indicated translational protein RpsE to be exploited as a promising drug-target candidate for which the structure was predicted, optimized and validated through molecular dynamics simulations (MDS). Absorption, distribution, metabolism and excretion screening recognized ZINC5441082 (N-Isopentyladenosine) (Lead_1) and ZINC1319816 (cyclopentyl-aminopurinyl-hydroxymethyl-oxolanediol) (Lead_2) as orally bioavailable compounds against RpsE. Molecular docking and MDS confirmed the binding efficacy and protein-ligand complex stability. Furthermore, binding free energy (Gbind) calculations, principal component and free energy landscape analyses affirmed the predicted nucleoside analogues against RpsE protein to be comprehensively examined as a potential treatment strategy against E. cloacae ATCC 13047.
Collapse
Affiliation(s)
- Reetika Debroy
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio-Medical Sciences, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio-Sciences, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Khan MA, Amin A, Farid A, Ullah A, Waris A, Shinwari K, Hussain Y, Alsharif KF, Alzahrani KJ, Khan H. Recent Advances in Genomics-Based Approaches for the Development of Intracellular Bacterial Pathogen Vaccines. Pharmaceutics 2022; 15:pharmaceutics15010152. [PMID: 36678781 PMCID: PMC9863128 DOI: 10.3390/pharmaceutics15010152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Infectious diseases continue to be a leading cause of morbidity and mortality worldwide. The majority of infectious diseases are caused by intracellular pathogenic bacteria (IPB). Historically, conventional vaccination drives have helped control the pathogenesis of intracellular bacteria and the emergence of antimicrobial resistance, saving millions of lives. However, in light of various limitations, many diseases that involve IPB still do not have adequate vaccines. In response to increasing demand for novel vaccine development strategies, a new area of vaccine research emerged following the advent of genomics technology, which changed the paradigm of vaccine development by utilizing the complete genomic data of microorganisms against them. It became possible to identify genes related to disease virulence, genetic patterns linked to disease virulence, as well as the genetic components that supported immunity and favorable vaccine responses. Complete genomic databases, and advancements in transcriptomics, metabolomics, structural genomics, proteomics, immunomics, pan-genomics, synthetic genomics, and population biology have allowed researchers to identify potential vaccine candidates and predict their effects in patients. New vaccines have been created against diseases for which previously there were no vaccines available, and existing vaccines have been improved. This review highlights the key issues and explores the evolution of vaccines. The increasing volume of IPB genomic data, and their application in novel genome-based techniques for vaccine development, were also examined, along with their characteristics, and the opportunities and obstacles involved. Critically, the application of genomics technology has helped researchers rapidly select and evaluate candidate antigens. Novel vaccines capable of addressing the limitations associated with conventional vaccines have been developed and pressing healthcare issues are being addressed.
Collapse
Affiliation(s)
- Muhammad Ajmal Khan
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- Correspondence: (M.A.K.); or (H.K.)
| | - Aftab Amin
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Awais Farid
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong, China
| | - Amin Ullah
- Molecular Virology Laboratory, Department of Microbiology and Biotechnology, Abasyn University, Peshawar 25000, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Khyber Shinwari
- Institute of Chemical Engineering, Department Immuno-Chemistry, Ural Federal University, Yekaterinbiurg 620002, Russia
| | - Yaseen Hussain
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (M.A.K.); or (H.K.)
| |
Collapse
|
4
|
Naveed M, Makhdoom SI, Ali U, Jabeen K, Aziz T, Khan AA, Jamil S, Shahzad M, Alharbi M, Alshammari A. Immunoinformatics Approach to Design Multi-Epitope-Based Vaccine against Machupo Virus Taking Viral Nucleocapsid as a Potential Candidate. Vaccines (Basel) 2022; 10:vaccines10101732. [PMID: 36298597 PMCID: PMC9609340 DOI: 10.3390/vaccines10101732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 01/09/2023] Open
Abstract
The family members of Arenaviridae include members of the genus Machupo virus, which have bi-segmented negative sense RNA inside the envelope and can be transferred to humans through rodent carriers. Machupo virus, a member of the mammarenavirus genus, causes Bolivian hemorrhage fever, its viral nucleocapsid protein being a significant virulence factor. Currently, no treatment is available for Bolivian hemorrhage fever and work to develop a protective as well as post-diagnosis treatment is underway. Adding to these efforts, this study employed a reverse-vaccinology approach to design a vaccine with B and T-cell epitopes of the viral nucleocapsid protein of the Machupo virus. Five B-cell specific, eight MHC-I restricted, and 14 MHC-II restricted epitopes were finalized for the construct based on an antigenicity score of >0.5 and non-allergenicity as a key characteristic. The poly-histidine tag was used to construct an immunogenic and stable vaccine construct and 50S ribosomal 46 protein L7/L12 adjuvant with linkers (EAAAK, GPGPG, and AYY). It covers 99.99% of the world’s population, making it highly efficient. The physicochemical properties like the aliphatic index (118.31) and the GRAVY index (0.302) showed that the vaccine is easily soluble. The overall Ramachandran score of the construct was 90.7%, and the instability index was 35.13, endorsing a stable structure. The immune simulations demonstrated a long-lasting antibody response even after the excretion of the antigen from the body in the first 5 days of injection. The IgM + IgG titers were predicted to rise to 6000 10 days post-injection and were illustrated to be stable (around 3000) after a month, elucidating that the vaccine would be effective and provide enduring protection. Lastly, the molecular interaction between the construct and the IKBKE receptor was significant and a higher eigenfactor value in MD simulations confirmed the stable molecular interaction between the receptor and the vaccine, validating our construct.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
- Correspondence: or (M.N.); or (T.A.)
| | - Syeda Izma Makhdoom
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Urooj Ali
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
- Department of Biotechnology, Quaid-I-Azam University Islamabad, Islamabad 45320, Pakistan
| | - Khizra Jabeen
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Tariq Aziz
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence: or (M.N.); or (T.A.)
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan
| | - Sumbal Jamil
- Rehman Medical Institute, Peshawar 25000, Pakistan
| | - Muhammad Shahzad
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Reading RG6 6AX, UK
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Genomic Analysis of Pasteurella atlantica Provides Insight on Its Virulence Factors and Phylogeny and Highlights the Potential of Reverse Vaccinology in Aquaculture. Microorganisms 2021; 9:microorganisms9061215. [PMID: 34199775 PMCID: PMC8226905 DOI: 10.3390/microorganisms9061215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022] Open
Abstract
Pasteurellosis in farmed lumpsuckers, Cyclopterus lumpus, has emerged as a serious disease in Norwegian aquaculture in recent years. Genomic characterization of the causative agent is essential in understanding the biology of the bacteria involved and in devising an efficient preventive strategy. The genomes of two clinical Pasteurella atlantica isolates were sequenced (≈2.3 Mbp), and phylogenetic analysis confirmed their position as a novel species within the Pasteurellaceae. In silico analyses revealed 11 genomic islands and 5 prophages, highlighting the potential of mobile elements as driving forces in the evolution of this species. The previously documented pathogenicity of P. atlantica is strongly supported by the current study, and 17 target genes were recognized as putative primary drivers of pathogenicity. The expression level of a predicted vaccine target, an uncharacterized adhesin protein, was significantly increased in both broth culture and following the exposure of P. atlantica to lumpsucker head kidney leucocytes. Based on in silico and functional analyses, the strongest gene target candidates will be prioritized in future vaccine development efforts to prevent future pasteurellosis outbreaks.
Collapse
|