1
|
Groppi E, Haddad M, Cristofoli V, Vansteelandt M, Gadea A. Unveiling the Substrate-Dependent Dynamics of Mycotoxin Production in Fusarium verticillioides Using an OSMAC-Metabolomics Approach. Chem Biodivers 2025; 22:e202401747. [PMID: 39481006 PMCID: PMC11741154 DOI: 10.1002/cbdv.202401747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Fusarium verticillioides is a prevalent plant pathogenic fungus known to produce harmful mycotoxins, including fumonisins and emerging toxins. This study aimed to investigate the influence of substrate on the temporal patterns of mycotoxin biosynthesis by F. verticillioides, employing a combined OSMAC (One Strain-Many Compounds) strategy and metabolomics approach. The fungus was cultured under various media conditions, and samples were collected over time. LC-MS/MS analyses and a dereplicative workflow were used to profile the secondary metabolite production, focusing on mycotoxins. The results demonstrated that modifying the culture conditions led to significant variations in fungal growth and the nature and relative concentrations of mycotoxins produced. Corn meal agar (CMA) medium was favorable for fumonisins A1 and B1, while malt extract agar (MEA) favored fumonisins A2 and B2. The study also identified the production of other mycotoxins related compounds as fusarins, bikaverin derivatives and fumonisins analogs, under different growth conditions. This study highlights the potential of combining OSMAC and metabolomics to unravel the substrate-dependent and time-dependent variations in mycotoxin biosynthesis by F. verticillioides. The insights gained provide a better understanding of the ecophysiology of this fungus and the occurrence of its mycotoxins, which can inform targeted mitigation strategies to ensure food and feed safety.
Collapse
Affiliation(s)
- Emie Groppi
- UMR 152, PharmaDev, Université de Toulouse, IRD, UPS, France
| | - Mohamed Haddad
- UMR 152, PharmaDev, Université de Toulouse, IRD, UPS, France
| | | | | | - Alice Gadea
- UMR 152, PharmaDev, Université de Toulouse, IRD, UPS, France
| |
Collapse
|
2
|
Achimón F, Pizzolitto RP. Volatilome of the maize phytopathogenic fungus Fusarium verticillioides: potential applications in diagnosis and biocontrol. PEST MANAGEMENT SCIENCE 2025; 81:357-371. [PMID: 39354900 DOI: 10.1002/ps.8439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Fusarium verticillioides is a maize fungal phytopathogen and a producer of volatile organic compounds (VOCs) and fumonisin B1 (FB1). Our aim was to study the volatilome, conidial production, ergosterol and FB1 biosynthesis in maize cultures over a 30-day incubation period (5, 10, 15, 20, 25, 30 days post inoculation [DPI]). The effect of pure VOCs on the same parameters was then evaluated to study their potential role as biocontrol agents. RESULTS In total, 91 VOCs were detected, with volatile profiles being more similar between 5 and 10 DPI compared with 15, 20, 25 and 30 DPI. Ergosterol content increased steadily with incubation time, and three growth stages were identified: a lag phase (0 to 15 DPI), an exponential phase (15 to 20 DPI) and a stationary phase (20 to 30 DPI). The maximum concentration of FB1 was detected at 25 (0.030 μg FB1/μg ergosterol) and 30 DPI (0.037 μg FB1/μg ergosterol), whereas conidial production showed a maximum value at 15 DPI (4.3 ± 0.2 × 105 conidia/μg ergosterol). Regarding pure VOCs, minimal inhibitory concentration values ranged from 0.3 mm for 4-hexen-3-one to 7.4 mm for 2-undecanone. Pure VOCs reduced radial growth, conidial production and ergosterol and FB1 biosynthesis. CONCLUSIONS The marked resemblance between VOC profiles at 5 and 10 DPI suggests that they could act as early indicators of fungal contamination, particularly 4-ethylguaiacol, 4-ethyl-2-methoxyanisole, heptanol and heptyl acetate. On the other hand, their role as inhibitors of fungal growth and FB1 biosynthesis prove their great potential as safer alternatives to control phytopathogenic fungi. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fernanda Achimón
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Romina P Pizzolitto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
3
|
Wang X, Wei J, Tang F, Chen F. Effects of blue light on pigment and citrinin production in Monascus ruber M7 via MrcreD, encoding an arrestin-like protein. Int J Biol Macromol 2024; 288:138604. [PMID: 39662546 DOI: 10.1016/j.ijbiomac.2024.138604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Blue light, as an important environmental factor, greatly affects the production of Monascus pigments (MPs) and citrinin in Monascus spp. In this study, the deletion, complementation, and overexpression mutants of MrcreD from Monascus ruber M7, which encodes an arrestin-like protein, were constructed and cultivated on PDA (Potato dextrose agar) medium to study the effects of blue light on MPs and citrinin production. The results revealed that blue light inhibited the formation of cleistothecia, conidia, and the production of MPs and citrinin in M. ruber M7. However, under blue light, in contrast to M. ruber M7, MrcreD-overexpressing strain displayed increased production of extracellular yellow pigments and intracellular orange pigments, whereas MrcreD-deleted strain showed enhanced production of intracellular yellow and orange pigments. Then, the extracellular citrinin production decreased in both mutants. The RT-qPCR results demonstrated that compared to M. ruber M7, overexpressing MrcreD increased the expression of genes involved in MPs biosynthesis, and decreased the genes involved in citrinin biosynthesis, while deleting MrcreD increased the expression of citrinin-relative genes. This is the first time that the functions of MrcreD gene in filamentous fungi have been researched under blue light, and it provides a strategy for exploring complex light-regulatory systems in filamentous fungi.
Collapse
Affiliation(s)
- Xiaodi Wang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jingyi Wei
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fufang Tang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fusheng Chen
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; School of Life Science, Guizhou Normal University, Universities Town, Huaxi District, Guiyang, Guizhou 550025, China.
| |
Collapse
|
4
|
Takahashi JA, de Queiroz LL, Vidal DM. A Close View of the Production of Bioactive Fungal Metabolites Mediated by Chromatin Modifiers. Molecules 2024; 29:3536. [PMID: 39124942 PMCID: PMC11314158 DOI: 10.3390/molecules29153536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Secondary metabolites produced by fungi are well known for their biological properties, which play important roles in medicine. These metabolites aid in managing infections and treating chronic illnesses, thereby contributing substantially to human health improvement. Despite this extensive knowledge, the vast biodiversity and biosynthetic potential of fungi is still largely unexplored, highlighting the need for further research in natural products. In this review, several secondary metabolites of fungal origin are described, emphasizing novel structures and skeletons. The detection and characterization of these metabolites have been significantly facilitated by advancements in analytical systems, particularly modern hyphenated liquid chromatography/mass spectrometry. These improvements have primarily enhanced sensitivity, resolution, and analysis flow velocity. Since the in vitro production of novel metabolites is often lower than the re-isolation of known metabolites, understanding chromatin-based alterations in fungal gene expression can elucidate potential pathways for discovering new metabolites. Several protocols for inducing metabolite production from different strains are discussed, demonstrating the need for uniformity in experimental procedures to achieve consistent biosynthetic activation.
Collapse
Affiliation(s)
- Jacqueline Aparecida Takahashi
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.L.d.Q.); (D.M.V.)
| | | | | |
Collapse
|
5
|
Josselin L, Proctor RH, Lippolis V, Cervellieri S, Hoylaerts J, De Clerck C, Fauconnier ML, Moretti A. Does alteration of fumonisin production in Fusarium verticillioides lead to volatolome variation? Food Chem 2024; 438:138004. [PMID: 37983995 DOI: 10.1016/j.foodchem.2023.138004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Fusarium verticillioides, a major fungal pathogen of maize, produces fumonisins, mycotoxins of global food safety concern. Control practices are needed to reduce the negative health and economic impacts of fumonisins. Therefore, we investigated volatile organic compounds (VOCs) emitted by fumonisin-producing (wild-type) and nonproducing (mutant) strains of F. verticillioides. VOC emissions were analyzed by gas chromatography-mass spectrometry following inoculation of maize kernels, and fumonisin accumulation was analyzed by high-performance liquid chromatography. Mutants emitted VOCs, including ethyl 3-methylbutanoate, that the wild type did not emit. In particular, ANOVA analysis showed significant differences between mutants and wild type for 4 VOCs which emission was correlated with absence of fumonisins. Exogenous ethyl 3-methylbutanoate reduced growth and fumonisin production in wild-type F. verticillioides, showing its potential in biocontrol. Together, our findings offer valuable insights into how mycotoxin production can impact VOC emissions from F. verticillioides and reveal a potential biocontrol strategy to reduce fumonisin contamination.
Collapse
Affiliation(s)
- Laurie Josselin
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium.
| | - Robert H Proctor
- Mycotoxin Prevention and Applied Microbiology Unit, United States Department of Agriculture (USDA), Agriculture Research Service, National Center for Agricultural Utilization Research, 1815 N. University St. Peoria, IL 61604, USA.
| | - Vincenzo Lippolis
- Institute of Sciences of Food Production, National Research Council of Italy, Via Amendola 122/o, 70126 Bari, Italy.
| | - Salvatore Cervellieri
- Institute of Sciences of Food Production, National Research Council of Italy, Via Amendola 122/o, 70126 Bari, Italy.
| | - Jeffrey Hoylaerts
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium.
| | - Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium.
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium.
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council of Italy, Via Amendola 122/o, 70126 Bari, Italy.
| |
Collapse
|
6
|
Tammam MA, Sebak M, Greco C, Kijjoa A, El-Demerdash A. Chemical diversity, biological activities and biosynthesis of fungal naphthoquinones and their derivatives: A comprehensive update. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Achimón F, Brito VD, Pizzolitto RP, Zygadlo JA. Effect of Carbon Sources on the Production of Volatile Organic Compounds by Fusarium verticillioides. J Fungi (Basel) 2022; 8:jof8020158. [PMID: 35205912 PMCID: PMC8880662 DOI: 10.3390/jof8020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of the present study was to evaluate the effect of different carbon sources on the hydrocarbon-like volatile organic compounds (VOCs) of Fusarium verticillioides strain 7600 through a Principal Component Analysis approach, and to explore their diesel potential by using data from the literature. The fungus was cultivated in GYAM culture medium, and five carbon sources were evaluated: glucose, sucrose, xylose, lactose, and fructose. The VOCs were collected using a close-loop apparatus and identified through GC-MS. The same profile of 81 VOCs was detected with all treatments, but with different relative percentages among carbon sources. The production of branched-chain alkanes (30 compounds) ranged from 25.80% to 38.64%, straight-chain alkanes (12 compounds) from 22.04% to 24.18%, benzene derivatives (12 compounds) from 7.48% to 35.58%, and the biosynthesis of branched-chain alcohols (11 compounds) was from 6.82% to 16.71%, with lower values for the remaining groups of VOCs. Our results show that F. verticillioides has the metabolic potential to synthesize diesel-like VOCs. Further research should include the optimization of culture conditions other than carbon sources to increase the production of certain groups of VOCs.
Collapse
Affiliation(s)
- Fernanda Achimón
- Multidisciplinary Institute of Plant Biology (IMBIV-CONICET), National University of Cordoba, Cordoba X5016GCA, Argentina; (F.A.); (V.D.B.); (J.A.Z.)
- Science and Food Technology Institute (ICTA), National University of Cordoba, Cordoba X5016GCA, Argentina
| | - Vanessa D. Brito
- Multidisciplinary Institute of Plant Biology (IMBIV-CONICET), National University of Cordoba, Cordoba X5016GCA, Argentina; (F.A.); (V.D.B.); (J.A.Z.)
- Science and Food Technology Institute (ICTA), National University of Cordoba, Cordoba X5016GCA, Argentina
| | - Romina P. Pizzolitto
- Multidisciplinary Institute of Plant Biology (IMBIV-CONICET), National University of Cordoba, Cordoba X5016GCA, Argentina; (F.A.); (V.D.B.); (J.A.Z.)
- Science and Food Technology Institute (ICTA), National University of Cordoba, Cordoba X5016GCA, Argentina
- Correspondence:
| | - Julio A. Zygadlo
- Multidisciplinary Institute of Plant Biology (IMBIV-CONICET), National University of Cordoba, Cordoba X5016GCA, Argentina; (F.A.); (V.D.B.); (J.A.Z.)
- Science and Food Technology Institute (ICTA), National University of Cordoba, Cordoba X5016GCA, Argentina
- Chemistry Department, Faculty of Exact, Physical and Natural Science, National University of Cordoba, Cordoba X5016GCA, Argentina
| |
Collapse
|
8
|
Avilamycin production enhancement by mutagenesis and fermentation optimization in Streptomyces viridochromogenes. World J Microbiol Biotechnol 2022; 38:50. [DOI: 10.1007/s11274-021-03191-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
|
9
|
Tatsch ÉF, Meyer K, Vogel RF, Niessen L. Characterization of the influence of carbon sources on fum1 gene expression in the fumonisin producer Fusarium verticillioides using RT - LAMP assay. Int J Food Microbiol 2021; 354:109323. [PMID: 34298484 DOI: 10.1016/j.ijfoodmicro.2021.109323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/11/2021] [Accepted: 06/26/2021] [Indexed: 11/25/2022]
Abstract
Fusarium verticillioides is one of the major fumonisin producers. The ingestion of this mycotoxin represents a risk for both human and animal health. The development of F. verticillioides is associated with environmental conditions, especially carbon sources. We developed a reliable and fast reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay and determined fum1 gene expression upon growth of two F. verticillioides strains isolated from maize and wheat in Czapek's medium containing four different sugars as sole carbon sources. Fumonisin B1 (FB1) production was determined by LC-MS/MS analysis. High growth and production of FB1 were observed in fructose-containing medium for the strain that originated from maize. Less production of FB1 occurred using maltose as sole carbon source for both strains. The fum1 gene expression started between 2 and 4 days of incubation, and positive signals were detected prior to the initial production of FB1. The RT-LAMP assay was effective in the detection of fum1 gene expression at very early stages of F. verticillioides growth and allowed the prediction of FB1 formation.
Collapse
Affiliation(s)
- Évelin F Tatsch
- Chair of Technical Microbiology, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Karsten Meyer
- Chair of Animal Hygiene, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Rudi F Vogel
- Chair of Technical Microbiology, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Ludwig Niessen
- Chair of Technical Microbiology, Technical University of Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany.
| |
Collapse
|