1
|
Wu CD, Fan YB, Chen X, Cao JW, Ye JY, Feng ML, Liu XX, Sun WJ, Liu RN, Wang AY. Analysis of endophytic bacterial diversity in seeds of different genotypes of cotton and the suppression of Verticillium wilt pathogen infection by a synthetic microbial community. BMC PLANT BIOLOGY 2024; 24:263. [PMID: 38594616 PMCID: PMC11005247 DOI: 10.1186/s12870-024-04910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND In agricultural production, fungal diseases significantly impact the yield and quality of cotton (Gossypium spp.) with Verticillium wilt posing a particularly severe threat. RESULTS This study is focused on investigating the effectiveness of endophytic microbial communities present in the seeds of disease-resistant cotton genotypes in the control of cotton Verticillium wilt. The technique of 16S ribosomal RNA (16S rRNA) amplicon sequencing identified a significant enrichment of the Bacillus genus in the resistant genotype Xinluzao 78, which differed from the endophytic bacterial community structure in the susceptible genotype Xinluzao 63. Specific enriched strains were isolated and screened from the seeds of Xinluzao 78 to further explore the biological functions of seed endophytes. A synthetic microbial community (SynCom) was constructed using the broken-rod model, and seeds of the susceptible genotype Xinluzao 63 in this community that had been soaked with the SynCom were found to significantly control the occurrence of Verticillium wilt and regulate the growth of cotton plants. Antibiotic screening techniques were used to preliminarily identify the colonization of strains in the community. These techniques revealed that the strains can colonize plant tissues and occupy ecological niches in cotton tissues through a priority effect, which prevents infection by pathogens. CONCLUSION This study highlights the key role of seed endophytes in driving plant disease defense and provides a theoretical basis for the future application of SynComs in agriculture.
Collapse
Affiliation(s)
- Chong-Die Wu
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Yong-Bin Fan
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Xue Chen
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Jiang-Wei Cao
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Jing-Yi Ye
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Meng-Lei Feng
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Xing-Xing Liu
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Wen-Jing Sun
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Rui-Na Liu
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Ai-Ying Wang
- College of Life Sciences, Shihezi University, Shihezi, China.
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China.
| |
Collapse
|
2
|
Tian Q, Gong Y, Liu S, Ji M, Tang R, Kong D, Xue Z, Wang L, Hu F, Huang L, Qin S. Endophytic bacterial communities in wild rice ( Oryza officinalis) and their plant growth-promoting effects on perennial rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1184489. [PMID: 37645460 PMCID: PMC10461003 DOI: 10.3389/fpls.2023.1184489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
Endophytic bacterial microbiomes of plants contribute to the physiological health of the host and its adaptive evolution and stress tolerance. Wild rice possesses enriched endophytic bacteria diversity, which is a potential resource for sustainable agriculture. Oryza officinalis is a unique perennial wild rice species in China with rich genetic resources. However, endophytic bacterial communities of this species and their plant growth-promoting (PGP) traits remain largely unknown. In this study, endophytic bacteria in the root, stem, and leaf tissues of O. officinalis were characterized using 16S rRNA gene Illumina sequencing. Culturable bacterial endophytes were also isolated from O. officinalis tissues and characterized for their PGP traits. The microbiome analysis showed a more complex structure and powerful function of the endophytic bacterial community in roots compared with those in other tissue compartments. Each compartment had its specific endophytic bacterial biomarkers, including Desulfomonile and Ruminiclostridium for roots; Lactobacillus, Acinetobacter, Cutibacterium and Dechloromonas for stems; and Stenotrophomonas, Chryseobacterium, Achromobacter and Methylobacterium for leaves. A total of 96 endophytic bacterial strains with PGP traits of phosphate solubilization, potassium release, nitrogen fixation, 1-aminocyclopropane-1-carboxylate (ACC) deaminase secretion, and siderophore or indole-3-acetic acid (IAA) production were isolated from O. officinalis. Among them, 11 strains identified as Enterobacter mori, E. ludwigii, E. cloacae, Bacillus amyloliquefaciens, B. siamensis, Pseudomonas rhodesiae and Kosakonia oryzae were selected for inoculation of perennial rice based on their IAA production traits. These strains showed promising PGP effects on perennial rice seedlings. They promoted plants to form a strong root system, stimulate biomass accumulation, and increase chlorophyll content and nitrogen uptake, which could fulfil the ecologically sustainable cultivation model of perennial rice. These results provide insights into the bacterial endosphere of O. officinalis and its application potential in perennial rice. There is the prospect of mining beneficial endophytic bacteria from wild rice species, which could rewild the microbiome of cultivated rice varieties and promote their growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fengyi Hu
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice From Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Liyu Huang
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice From Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Shiwen Qin
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice From Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Dong M, Shi L, Xie Z, Lian L, Zhang J, Jiang Z, Wu C. Shifts in the diversity of root endophytic microorganisms across the life cycle of the ratooning rice Jiafuzhan. Front Microbiol 2023; 14:1161263. [PMID: 37455730 PMCID: PMC10348713 DOI: 10.3389/fmicb.2023.1161263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The diversity of root endophytic microorganisms, which is closely related to plant life activities, is known to vary with the plant growth stage. This study on the ratooning rice Jiafuzhan explored the diversity of the root endophytic bacteria and fungi and their dynamics during the plant life cycle. By sequencing the 16S ribosomal ribonucleic acid (16S rRNA) and internal transcribed spacer (ITS) genes, 12,154 operational taxonomic units (OTUs) and 497 amplicon sequence variants (ASVs) were obtained, respectively. The root endophytic microorganisms of rice in the seedling, tillering, jointing, heading, and mature stages of the first crop and at 13, 25, and 60 days after regeneration (at the heading, full heading, and mature stages of the second crop, respectively) were analyzed using diversity and correlation analyses. There were significant differences in the α-diversity and β-diversity of root endophytic bacteria and fungi in the growth stage. Additionally, linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed biomarker bacteria for each growth stage, but biomarker fungi did not exist in every stage. Moreover, the correlation analysis showed that the bacterial and fungal biomarkers interacted with each other. Furthermore, the nitrogen-fixing genus Bradyrhizobium existed in all growth stages. These findings indicate the pattern of root endophytic microorganisms of ratooning rice at different growth stages, and they provide new insights into the high yield of the second crop of ratooning rice (in light of the abundance of various bacteria and fungi).
Collapse
|
4
|
Salinity Influences Endophytic Bacterial Communities in Rice Roots from the Indian Sundarban Area. Curr Microbiol 2022; 79:238. [PMID: 35779137 DOI: 10.1007/s00284-022-02936-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
In "Sundarbans", the coastal regions of the West Bengal, soil salinity has always been one of the major causes of reduction in yield in these regions. The use of endophytic is a well-demanded strategy to mitigate the problems of salt stress and rice productivity. The present study attempted to analyze rice root endogenous microbial diversity and their relationship with soil salinity and physicochemical factors in the salt stressed region of Sundarbans, India using amplicon metagenomics approaches. Our investigation indicates, that the unique microbiome slightly acidic nutrient enriched non-saline zone is characterized by microbial genera that reported either having plant growth promotion (Flavobacterium, Novosphingobium, and Kocuria) or biocontrol abilities (Leptotrichia), whereas high ionic alkaline saline stressed zone dominated with either salt-tolerant microbes or less characterized endophytes (Arcobacter and Vogesella). The number of genera represented by significantly abundant OTUs was higher in the non-saline zone compared to that of the saline stressed zone probably due to higher nutrient concentrations and the absence of abiotic stress factors including salinity. Physicochemical parameters like nitrogen, phosphorus, and potassium were found significantly positively correlated with Muribaculaceae highly enriched in the non-saline zone. However, relative dissolved oxygen was found significantly negatively correlated with Rikenellaceae and Desulfovibrionaceae, enriched in the non-saline soil. This study first provides the detailed characterizations of rice root endophytic bacterial communities as well as their diversity contributed by measured environmental parameters in salinity Sundarbans areas. Since this study deals with two gradients of salinity, connecting the microbial diversity with the salinity range could be targeted for the use as "bioindicator" taxa and bio-fertilizer formulation in salt-affected regions.
Collapse
|