1
|
Zhang L, Ren J, Yu T, Li Y, Li Y, Lu S, Guo X. Supplementation of citrus pectin with whole-cell pectinase PG5 on Pichia pastoris promotes recovery of colitis and enhances intestinal barrier function in DSS-treated mice. Int J Biol Macromol 2024; 264:130476. [PMID: 38428761 DOI: 10.1016/j.ijbiomac.2024.130476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
A whole-cell biocatalyst was developed by genetically engineering pectinase PG5 onto the cell surface of Pichia pastoris using Gcw12 as the anchoring protein. Whole-cell PG5 eliminated the need for enzyme extraction and purification, while also exhibiting enhanced thermal stability, pH stability, and resistance to proteases in vitro compared to free PG5. Magnetic resonance mass spectrometry analysis revealed that whole-cell PG5 efficiently degraded citrus pectin, resulting in the production of a mixture of pectin oligosaccharides. The primary components of the mixture were trigalacturonic acid, followed by digalacturonic acid and tetragalacturonic acid. Supplementation of citrus pectin with whole-cell PG5 resulted in a more pronounced protective effect compared to free PG5 in alleviating colitis symptoms and promoting the integrity of the colonic epithelial barrier in a mouse model of dextran sulfate sodium-induced colitis. Hence, this study demonstrates the potential of utilizing whole-cell pectinase as an effective biocatalyst to promote intestinal homeostasis in vivo.
Collapse
Affiliation(s)
- Li Zhang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Jing Ren
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Tianfei Yu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Yuanrong Li
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Yanshun Li
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China.
| |
Collapse
|
2
|
Rabadiya K, Pardhi D, Thaker K, Patoliya J, Rajput K, Joshi R. A review on recent upgradation and strategies to enhance cyclodextrin glucanotransferase properties for its applications. Int J Biol Macromol 2024; 259:129315. [PMID: 38211906 DOI: 10.1016/j.ijbiomac.2024.129315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Cyclodextrin glycosyltransferase (CGTase) is a significant extracellular enzyme with diverse functions. CGTase is widely used in production of cyclic α-(1,4)-linked oligosaccharides (cyclodextrins) from starch via transglycosylation reaction. Recent discoveries of novel CGTases from different microorganisms have expanded its applications but natural CGTase have lower yield, leading to heterologous expression for increased production to meet various needs. Moreover, significant advancements in directed evolution approach have been explored to alter the molecular structure of CGTase to enhance its performance. This review comprehensively summarizes the strategies employed in heterologous expression to boost CGTase production and secretion in various host. It also outlines molecular engineering approaches aimed to improving CGTase properties, including product and substrate specificity, catalytic efficiency, and thermal stability. Additionally, a considerable stability against changes in temperature and organic solvents can be obtained by immobilization.
Collapse
Affiliation(s)
- Khushbu Rabadiya
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Dimple Pardhi
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Khushali Thaker
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Jaimini Patoliya
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Kiransinh Rajput
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Rushikesh Joshi
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
3
|
Research progresses on enzymatic modification of starch with 4-α-glucanotransferase. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Krusong K, Ismail A, Wangpaiboon K, Pongsawasdi P. Production of Large-Ring Cyclodextrins by Amylomaltases. Molecules 2022; 27:molecules27041446. [PMID: 35209232 PMCID: PMC8875642 DOI: 10.3390/molecules27041446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Amylomaltase is a well-known glucan transferase that can produce large ring cyclodextrins (LR-CDs) or so-called cycloamyloses via cyclization reaction. Amylomaltases have been found in several microorganisms and their optimum temperatures are generally around 60–70 °C for thermostable amylomaltases and 30–45 °C for the enzymes from mesophilic bacteria and plants. The optimum pHs for mesophilic amylomaltases are around pH 6.0–7.0, while the thermostable amylomaltases are generally active at more acidic conditions. Size of LR-CDs depends on the source of amylomaltases and the reaction conditions including pH, temperature, incubation time, and substrate. For example, in the case of amylomaltase from Corynebacterium glutamicum, LR-CD productions at alkaline pH or at a long incubation time favored products with a low degree of polymerization. In this review, we explore the synthesis of LR-CDs by amylomaltases, structural information of amylomaltases, as well as current applications of LR-CDs and amylomaltases.
Collapse
Affiliation(s)
- Kuakarun Krusong
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
- Correspondence: ; Tel.: + 66-(0)2-218-5413
| | - Abbas Ismail
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
| | - Karan Wangpaiboon
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand;
| |
Collapse
|