1
|
Aizpuru A, González-Sánchez A. Traditional and new trend strategies to enhance pigment contents in microalgae. World J Microbiol Biotechnol 2024; 40:272. [PMID: 39030303 PMCID: PMC11271434 DOI: 10.1007/s11274-024-04070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024]
Abstract
Microalgae are a source of a wide variety of commodities, including particularly valuable pigments. The typical pigments present in microalgae are the chlorophylls, carotenoids, and phycobiliproteins. However, other types of pigments, of the family of water-soluble polyphenols, usually encountered in terrestrial plants, have been recently reported in microalgae. Among such microalgal polyphenols, many flavonoids have a yellowish hue, and are used as natural textile dyes. Besides being used as natural colorants, for example in the food or cosmetic industry, microalgal pigments also possess many bioactive properties, making them functional as nutraceutical or pharmaceutical agents. Each type of pigment, with its own chemical structure, fulfills particular biological functions. Considering both eukaryotes and prokaryotes, some species within the four most promising microalgae groups (Cyanobacteria, Rhodophyta, Chlorophyta and Heterokontophyta) are distinguished by their high contents of specific added-value pigments. To further enhance microalgae pigment contents during autotrophic cultivation, a review is made of the main related strategies adopted during the last decade, including light adjustments (quantity and quality, and the duration of the photoperiod cycle), and regard to mineral medium characteristics (salinity, nutrients concentrations, presence of inductive chemicals). In contrast to what is usually observed for growth-related pigments, accumulation of non-photosynthetic pigments (polyphenols and secondary carotenoids) requires particularly stressful conditions. Finally, pigment enrichment is also made possible with two new cutting-edge technologies, via the application of metallic nanoparticles or magnetic fields.
Collapse
Affiliation(s)
- Aitor Aizpuru
- Universidad del Mar, Campus Puerto Ángel, San Pedro Pochutla, 70902, Oaxaca, Mexico.
| | - Armando González-Sánchez
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Escolar, 04510, Mexico City, Mexico.
| |
Collapse
|
2
|
Silva PGP, Mussagy CU, Lima CDA, Santos-Ebinuma VC, Burkert JFDM, Santos LO. Sustainable approach to recover β-carotene and astaxanthin from Phaffia rhodozyma grown in a stirred-tank bioreactor under the influence of magnetic fields. BIORESOURCE TECHNOLOGY 2023; 390:129906. [PMID: 37866770 DOI: 10.1016/j.biortech.2023.129906] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
This study aimed to produce carotenoids by Phaffia rhodozyma in a stirred-tank bioreactor under the influence of magnetic fields (MF) and to evaluate a sustainable approach to recover them from the yeast biomass. MF application proved to be effective in increasing 8.6 and 22.9 % of β-carotene and astaxanthin production, respectively. Regarding solid-liquid extraction (SLE), the ability of aqueous and ethanolic solutions of protic ionic liquids (PILs) was determined. β-carotene and astaxanthin recovery yields increased with the anion alkyl chain length hydrophobicity. [Pro][Oct]:EtOH (50 % v v-1) was selected as the effective solvent. Moreover, it led to improvement in carotenoid stability at different storage temperatures over time in comparison with the control. This study is one of the first to describe an effective and sustainable approach to move carotenoid production from shake flasks to a bioreactor under the influence of MF and recover carotenoids from P. rhodozyma biomass.
Collapse
Affiliation(s)
- Pedro Garcia Pereira Silva
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil.
| | - Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| | - Caio de Azevedo Lima
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University, Araraquara 14800-903, Brazil
| | - Valéria C Santos-Ebinuma
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University, Araraquara 14800-903, Brazil
| | | | - Lucielen Oliveira Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil.
| |
Collapse
|
3
|
Machado BR, Duarte SH, Santos LO. Extracellular lipase production by Yarrowia lipolytica under magnetic fields. World J Microbiol Biotechnol 2023; 39:290. [PMID: 37650985 DOI: 10.1007/s11274-023-03732-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
This study aimed at estimating cultivation conditions to enable Yarrowia lipolytica NNRL Y-1095 to produce extracellular lipase and at evaluating the influence of magnetic fields (MF) on the lipase production and on its catalytic conditions. Culture conditions of carbon sources and surfactant defined to produce extracellular lipase were 10 g L-1 glucose, 15 g L-1 olive oil and 2 g L-1 Triton X-100. The highest lipase activity (34.8 U mL-1) was reached after 144 h when MFs were applied from 72 to 144 h of culture. It corresponds to an increase of 287.5% by comparison with the highest lipase activity in the control culture. MF application from 72 to 144 h did not change the optimal temperature of lipase, which was 37 °C, by comparison with the control. However, the optimal pH of the control was 7.0 while the one of lipase produced with MF was 8.0. Findings highlighted that the presence of MFs led to increase in synthesis of lipase by Y. lipolytica, with changes in the catalytic profile. This is one of the first studies of MF application to Y. lipolytica NRRL Y-1095 cultures to produce lipase.
Collapse
Affiliation(s)
- Bruno Roswag Machado
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Susan Hartwig Duarte
- Laboratory of Biochemistry and Microbiology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Lucielen Oliveira Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
4
|
Nascimento RRC, Moreno MR, Azevedo RS, Costa JAV, Marins LF, Santos LO. Magnetic Fields as Inducers of Phycobiliprotein Production by Synechococcus elongatus PCC 7942. Curr Microbiol 2023; 80:242. [PMID: 37300570 DOI: 10.1007/s00284-023-03348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
This study aimed to analyze the effect of magnetic field (MF) application on the metabolism of Synechococcus elongatus PCC 7942. Concentrations of biomass, carbohydrate, protein, lipid, and photosynthetic pigments (chlorophyll-a, C-phycocyanin, allophycocyanin and phycoerythrin) were determined. In cultures with MF application (30 mT for 24 h d-1), there were increases of 47.5% in total protein content, 87.4% in C-phycocyanin, and 332.8% in allophycocyanin contents, by comparison with the control. Allophycocyanin is the most affected pigment by MF application. Therefore, its biosynthetic route was investigated, and four genes related to its synthesis were found. However, the analysis of the gene expression showed no statistical differences from the control culture, which suggests that induction of such genes may occur soon after MF application with consequent stabilization over time. MF application may be a cost-effective alternative to increase production of compounds of commercial interest by cyanobacteria.
Collapse
Affiliation(s)
- Raphael R C Nascimento
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Matheus R Moreno
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Raíza S Azevedo
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Jorge A V Costa
- Laboratory of Biochemical Engineering, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Luis F Marins
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Lucielen O Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
5
|
Bauer LM, da Gloria Esquível M, Costa JAV, da Rosa APC, Santos LO. Influence of Cell Wall on Biomolecules Biosynthesis in Chlamydomonas reinhardtii Strains Exposed to Magnetic Fields. Curr Microbiol 2023; 80:96. [PMID: 36737538 DOI: 10.1007/s00284-023-03189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
The application of magnetic fields (MF) has attracted the attention of researchers due to their efficiency to change cell metabolism. Chlamydomonas reinhardtii is a biotechnologically useful microalga with versatile metabolism that may be a valuable organism to study the effects of the MF in biology. Therefore, two C. reinhardtii strains, one with cell wall (2137) and other which lacks the cell wall (Wt-S1-cc4694), were evaluated that a new sensitivity factor in the analysis could be included. Comparative studies were undertaken with the two C. reinhardtii strains under the MF intensities of 0.005 mT (terrestrial MF - control), 11 and 20 mT. Results indicated that the physical cell wall barrier protected cells against the MF applied during the assays. Only with the highest MF applied (20 mT) a slight increase in lipid concentration in the cell wall strain was detected. The lowest growth of the strain that lacks cell wall (Wt-S1) indicated that these cells are under a negative effect. To cope with the two MF stresses conditions, Wt-S1 cells produced more pigments (chlorophylls and carotenoids) and lipids and enhanced the antioxidant defense system. The raise of these compounds under MF could potentially have a positive biotechnological impact on algal biomass.
Collapse
Affiliation(s)
- Lenon M Bauer
- Laboratory of Biotechnology, Chemistry and Food School, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Maria da Gloria Esquível
- Landscape, Environment, Agriculture and Food - LEAF Centre, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017, Lisboa, Portugal
| | - Jorge Alberto V Costa
- Laboratory of Biochemical Engineering, Chemistry and Food School, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Ana Priscila C da Rosa
- Laboratory of Biochemical Engineering, Chemistry and Food School, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Lucielen O Santos
- Laboratory of Biotechnology, Chemistry and Food School, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|