1
|
Song YJ, Zhao NL, Dai DR, Bao R. Prospects of Pseudomonas in Microbial Fuel, Bioremediation, and Sustainability. CHEMSUSCHEM 2024:e202401324. [PMID: 39117578 DOI: 10.1002/cssc.202401324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Microbial applications in agriculture and industry have gained significant attention due to their potential to address environmental challenges and promote sustainable development. Among these, the genus Pseudomonas stands out as a promising candidate for various biotechnological uses, thanks to its metabolic flexibility, resilience, and adaptability to diverse environments. This review provides a comprehensive overview of the current state and future prospects of microbial fuel production, bioremediation, and sustainable development, focusing on the pivotal role of Pseudomonas species. We emphasize the importance of microbial fuel as a renewable energy source and discuss recent advancements in enhancing biofuel generation using Pseudomonas strains. Additionally, we explore the critical role of Pseudomonas in bioremediation processes, highlighting its ability to degrade a wide spectrum of pollutants, including hydrocarbons, pesticides, and heavy metals, thereby reducing environmental contamination. Despite significant progress, several challenges remain. These include refining microbial strains for optimal process efficiency and addressing ecological considerations. Nonetheless, the diverse capabilities of Pseudomonas offer promising avenues for innovative solutions to pressing environmental issues, supporting the transition to a more sustainable future.
Collapse
Affiliation(s)
- Ying-Jie Song
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Ning-Lin Zhao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - De-Rong Dai
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Aqif M, Shah MUH, Khan R, Umar M, SajjadHaider, Razak SIA, Wahit MU, Khan SUD, Sivapragasam M, Ullah S, Nawaz R. Glycolipids biosurfactants production using low-cost substrates for environmental remediation: progress, challenges, and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47475-47504. [PMID: 39017873 DOI: 10.1007/s11356-024-34248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
The production of renewable materials from alternative sources is becoming increasingly important to reduce the detrimental environmental effects of their non-renewable counterparts and natural resources, while making them more economical and sustainable. Chemical surfactants, which are highly toxic and non-biodegradable, are used in a wide range of industrial and environmental applications harming humans, animals, plants, and other entities. Chemical surfactants can be substituted with biosurfactants (BS), which are produced by microorganisms like bacteria, fungi, and yeast. They have excellent emulsifying, foaming, and dispersing properties, as well as excellent biodegradability, lower toxicity, and the ability to remain stable under severe conditions, making them useful for a variety of industrial and environmental applications. Despite these advantages, BS derived from conventional resources and precursors (such as edible oils and carbohydrates) are expensive, limiting large-scale production of BS. In addition, the use of unconventional substrates such as agro-industrial wastes lowers the BS productivity and drives up production costs. However, overcoming the barriers to commercial-scale production is critical to the widespread adoption of these products. Overcoming these challenges would not only promote the use of environmentally friendly surfactants but also contribute to sustainable waste management and reduce dependence on non-renewable resources. This study explores the efficient use of wastes and other low-cost substrates to produce glycolipids BS, identifies efficient substrates for commercial production, and recommends strategies to improve productivity and use BS in environmental remediation.
Collapse
Affiliation(s)
- Muhammad Aqif
- Faculty of Materials and Chemical Engineering, Department of Chemical Engineering, Ghulam Ishaq Khan Institute, Topi, Swabi, Khyber Pakhtunkhwa, 23460, Pakistan
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| | - Mansoor Ul Hassan Shah
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Rawaiz Khan
- College of Dentistry, Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, King Saud University, 11545, Riyadh, Saudi Arabia.
| | - Muhammad Umar
- Faculty of Materials and Chemical Engineering, Department of Chemical Engineering, Ghulam Ishaq Khan Institute, Topi, Swabi, Khyber Pakhtunkhwa, 23460, Pakistan
| | - SajjadHaider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| | - Saiful Izwan Abd Razak
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Sports Innovation & Technology Centre, Institute of Human Centred Engineering, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia
| | - Mat Uzir Wahit
- Faculty of Chemical and Energy Engineering, UniversitiTeknologi Malaysia (UTM), 81310, Skudai, Johor Bahru, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
| | - Salah Ud-Din Khan
- College of Engineering, Sustainable Energy Center Technologies, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| | - Magaret Sivapragasam
- Faculty of Integrated Life Sciences, School of Integrated Sciences (SIS), School of Postgraduate Studies, Research and Internationalization, Quest International University, 30250, Ipoh, Perak, Malaysia
| | - Shafi Ullah
- Institute of Soil and Environmental Sciences, PirMehr Ali Shah Arid Agriculture University Shamsabad, Murree Rd, Rawalpindi, 46300, Pakistan
| | - Rab Nawaz
- Institute of Soil and Environmental Sciences, PirMehr Ali Shah Arid Agriculture University Shamsabad, Murree Rd, Rawalpindi, 46300, Pakistan
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Li C, Wang Y, Zhou L, Cui Q, Sun W, Yang J, Su H, Zhao F. High mono-rhamnolipids production by a novel isolate Pseudomonas aeruginosa LP20 from oily sludge: characterization, optimization, and potential application. Lett Appl Microbiol 2024; 77:ovae016. [PMID: 38366661 DOI: 10.1093/lambio/ovae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
This study aims to isolate microbial strains for producing mono-rhamnolipids with high proportion. Oily sludge is rich in petroleum and contains diverse biosurfactant-producing strains. A biosurfactant-producing strain LP20 was isolated from oily sludge, identified as Pseudomonas aeruginosa based on phylogenetic analysis of 16S rRNA. High-performance liquid chromatography-mass spectrometry results indicated that biosurfactants produced from LP20 were rhamnolipids, mainly containing Rha-C8-C10, Rha-C10-C10, Rha-Rha-C8-C10, Rha-Rha-C10-C10, Rha-C10-C12:1, and Rha-C10-C12. Interestingly, more mono-rhamnolipids were produced by strain LP20 with a relative abundance of 64.5%. Pseudomonas aeruginosa LP20 optimally produced rhamnolipids at a pH of 7.0 and a salinity of 0.1% using glycerol and nitrate. The culture medium for rhamnolipids by strain LP20 was optimized by response surface methodology. LP20 produced rhamnolipids up to 6.9 g L-1, increased by 116%. Rhamnolipids produced from LP20 decreased the water surface tension to 28.1 mN m-1 with a critical micelle concentration of 60 mg L-1. The produced rhamnolipids emulsified many hydrocarbons with EI24 values higher than 56% and showed antimicrobial activity against Staphylococcus aureus and Cladosporium sp. with inhibition rates 48.5% and 17.9%, respectively. Pseudomonas aeruginosa LP20 produced more proportion of mono-rhamnolipids, and the LP20 rhamnolipids exhibited favorable activities and promising potential in microbial-enhanced oil recovery, bioremediation, and agricultural biocontrol.
Collapse
Affiliation(s)
- Chunyan Li
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Yujing Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Liguo Zhou
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Qingfeng Cui
- Research Center of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
| | - Wenzhe Sun
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Junyuan Yang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Han Su
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Feng Zhao
- School of Life Sciences, Qufu Normal University, Qufu, Shandong Province, 273165, China
| |
Collapse
|
4
|
Chauhan M, Kimothi A, Sharma A, Pandey A. Cold adapted Pseudomonas: ecology to biotechnology. Front Microbiol 2023; 14:1218708. [PMID: 37529326 PMCID: PMC10388556 DOI: 10.3389/fmicb.2023.1218708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
The cold adapted microorganisms, psychrophiles/psychrotolerants, go through several modifications at cellular and biochemical levels to alleviate the influence of low temperature stress conditions. The low temperature environments depend on these cold adapted microorganisms for various ecological processes. The ability of the microorganisms to function in cold environments depends on the strategies directly associated with cell metabolism, physicochemical constrains, and stress factors. Pseudomonas is one among such group of microorganisms which is predominant in cold environments with a wide range of ecological and biotechnological applications. Bioformulations of Pseudomonas spp., possessing plant growth promotion and biocontrol abilities for application under low temperature environments, are well documented. Further, recent advances in high throughput sequencing provide essential information regarding the prevalence of Pseudomonas in rhizospheres and their role in plant health. Cold adapted species of Pseudomonas are also getting recognition for their potential in biodegradation and bioremediation of environmental contaminants. Production of enzymes and bioactive compounds (primarily as an adaptation mechanism) gives way to their applications in various industries. Exopolysaccharides and various biotechnologically important enzymes, produced by cold adapted species of Pseudomonas, are making their way in food, textiles, and pharmaceuticals. The present review, therefore, aims to summarize the functional versatility of Pseudomonas with particular reference to its peculiarities along with the ecological and biotechnological applications.
Collapse
Affiliation(s)
- Mansi Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Ayushi Kimothi
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Avinash Sharma
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| |
Collapse
|