1
|
Wu X, Liu Y, Jia B, Tao L, Li H, Wang J, Yuan Z, Sun X, Yao Y. Four Decades of Bacillus Biofertilizers: Advances and Future Prospects in Agriculture. Microorganisms 2025; 13:187. [PMID: 39858955 PMCID: PMC11767708 DOI: 10.3390/microorganisms13010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Over the past four decades, Bacillus biofertilizers, which are microbial formulations based on Bacillus species, have significantly contributed to sustainable agriculture by enhancing crop growth, improving soil health, and reducing the dependency on chemical fertilizers. Bacillus species, particularly known for their ability to promote plant growth, fix nitrogen, solubilize phosphorus, and produce growth-promoting substances such as phytohormones and antibiotics, have emerged as key players in the development of eco-friendly agricultural solutions. This research utilizes bibliometric analysis based on 3,242 documents sourced from the Web of Science database to map the development, key contributions, and innovation within the field from 1985 to 2023. This study identifies exponential growth in research output, particularly from 2003 onwards, indicating a robust interest and expanding research base predominantly in China, India, and the United States. We segmented the research timeline into three distinct phases, each marked by varying growth rates and research foci. This paper presents novel insights into the geographical and institutional distributions of research, highlighting the predominant role of developing countries in advancing Bacillus-based technologies. Key research hotspots have evolved from basic applications to complex interactions involving synthetic microbial communities and advanced multi-omics techniques. Our findings demonstrate a trend towards more strategic and technologically integrated approaches to developing Bacillus biofertilizers, reflecting broader shifts towards more sustainable agricultural systems. This study not only charts historical progress, but also proposes future research trajectories aimed at enhancing the application and effectiveness of microbial fertilizers across diverse ecosystems.
Collapse
Affiliation(s)
- Xinmai Wu
- Xianghu Laboratory, Hangzhou 311231, China; (X.W.); (B.J.); (H.L.); (J.W.); (Z.Y.); (X.S.)
| | - Yan Liu
- Xianghu Laboratory, Hangzhou 311231, China; (X.W.); (B.J.); (H.L.); (J.W.); (Z.Y.); (X.S.)
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Nanjing Agricultural University, Nanjing 210095, China;
| | - Baolei Jia
- Xianghu Laboratory, Hangzhou 311231, China; (X.W.); (B.J.); (H.L.); (J.W.); (Z.Y.); (X.S.)
| | - Lili Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Jiangsu Provincial Key Laboratory of Coastal Saline Soil Resources Utilization and Ecological Conservation, Nanjing Agricultural University, Nanjing 210095, China;
| | - Han Li
- Xianghu Laboratory, Hangzhou 311231, China; (X.W.); (B.J.); (H.L.); (J.W.); (Z.Y.); (X.S.)
| | - Jingbang Wang
- Xianghu Laboratory, Hangzhou 311231, China; (X.W.); (B.J.); (H.L.); (J.W.); (Z.Y.); (X.S.)
| | - Ziqi Yuan
- Xianghu Laboratory, Hangzhou 311231, China; (X.W.); (B.J.); (H.L.); (J.W.); (Z.Y.); (X.S.)
| | - Xiaobao Sun
- Xianghu Laboratory, Hangzhou 311231, China; (X.W.); (B.J.); (H.L.); (J.W.); (Z.Y.); (X.S.)
| | - Yanlai Yao
- Xianghu Laboratory, Hangzhou 311231, China; (X.W.); (B.J.); (H.L.); (J.W.); (Z.Y.); (X.S.)
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
2
|
Yu K, Wang Z, Yang W, Li S, Wu D, Zheng H, Ye Z, Yang S, Liu D. Application of Biochar-Immobilized Bacillus megaterium for Enhancing Phosphorus Uptake and Growth in Rice. PLANTS (BASEL, SWITZERLAND) 2025; 14:214. [PMID: 39861565 PMCID: PMC11768149 DOI: 10.3390/plants14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/02/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar serves as a carrier that enhances microbial survival, and its porous structure and surface characteristics ensure the adsorption of Bacillus megaterium. Inoculating rice husk biochar-immobilized with Bacillus megaterium (BMB) resulted in dissolved inorganic and organic P levels of 39.55 and 31.97 mL L-1, respectively. Subsequently, rice pot experiments were conducted to investigate the response of soil microbial P mobilization and P uptake in rice to fertilizer inputs. The organic fertilizer (OF) combined with BMB treatment (MOF) showed the highest soil available phosphorus (AP) at 38 days, with a value of 7.83 mg kg-1, as well as increased the pqqC abundance while decreasing the abundance of phoD bacterial communities compared with the control. Furthermore, the bioavailable P reservoir (H2O-Pi and NaHCO3-Pi) in soil was greatly increased through the fertilizer input and microbial turnover, with the highest H2O-Pi (3.66 mg kg-1) in OF treatment and the highest NaHCO3-Pi (52.65 mg kg-1) in MOF treatment. Additionally, carbon utilization analysis was applied using the commercial Biolog system, revealing that the MOF treatment significantly increased the utilization of carbohydrates, polymers, and amino acid carbon sources. Moreover, compared to the control, MOF treatment significantly increased the shoot (0.469%) and root P (0.516%) content while promoting root development and thereby supporting rice growth. Our study demonstrates that the MOF treatment displayed higher P levels in both soil and rice plants, providing a theoretical basis for further understanding the role of biochar-based bacterial agents in rice P management.
Collapse
Affiliation(s)
- Keru Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Z.W.); (S.L.); (H.Z.); (Z.Y.)
- School of Environmental and Resources, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhenyu Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Z.W.); (S.L.); (H.Z.); (Z.Y.)
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenyan Yang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China;
| | - Shuai Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Z.W.); (S.L.); (H.Z.); (Z.Y.)
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - Dongtao Wu
- Soil Fertilizer and Plant Protection and Energy Sources Station of Lishui City, Hangzhou 323000, China;
| | - Hongtao Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Z.W.); (S.L.); (H.Z.); (Z.Y.)
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengqian Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Z.W.); (S.L.); (H.Z.); (Z.Y.)
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - Shaona Yang
- Zhoushan Agricultural Technology Extension Center, Zhoushan 316021, China
| | - Dan Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Z.W.); (S.L.); (H.Z.); (Z.Y.)
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
3
|
Sharma S, Bindraban PS, Dimkpa CO, Pandey R. Phosphorus fertilizer: from commodity to speciality - from fertilizing the field to fertilizing the plant. Curr Opin Biotechnol 2024; 90:103198. [PMID: 39278023 DOI: 10.1016/j.copbio.2024.103198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
Phosphatic fertilizers are indispensable for sustainable agriculture, but phosphorus (P) scarcity has drawn global attention with respect to research and policy discussions. Soil conditions (pH, organic matter, metal oxides), P-fertilizer form and its application methods, and plant growth mechanisms influence plant P availability. Given the nonrenewable nature and low use efficiency of P, the development of speciality P-fertilizers and improved application methods are essential for reducing environmental P losses and increasing plant P uptake, thereby improving P use efficiency (PUE). This paper explores strategies for using innovative P-fertilizers targeting plant physiological processes instead of conventional bulk field applications to enhance PUE.
Collapse
Affiliation(s)
- Sandeep Sharma
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Prem S Bindraban
- International Fertilizer Development Center, Muscle Shoals, AL 35662, USA
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, USA
| | - Renu Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
4
|
Jiang X, Lin M, Zhang X, Yu G, Jiang P, Liu J. Pioneer plants promote soil formation in a mixture of bauxite tailings and red mud. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122590. [PMID: 39305869 DOI: 10.1016/j.jenvman.2024.122590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
The disposal of bauxite tailings and red mud is a concern for the sustainable development of the Al industry. Our previous study demonstrated that the disposal of bauxite tailings and red mud as a soil-like matrix (BRM) has great application potential for revegetation after bauxite mining with suitable pioneer species promoting soil formation in the BRM. The present study evaluated the improvement effects of six pioneer plants (Celosia argentea, Bassia scoparia, Suaeda glauca, Melilotus suaveolens, Sorghum sudanense, and Sesbania cannabina) on the physicochemical properties and microbial communities of BRM. The results indicated that the pioneer plants significantly decreased salinity and alkalinity and increased micropore volume, available phosphorus, and organic matter in the BRM (p < 0.05). Furthermore, microbial diversity and network stability in BRM significantly increased after planting pioneer plants. The partial least-squares path model analysis showed that pore structure improvement was most important in the plant promotion of soil formation in BRM. Although all six plants grew well on BRM, C. argentea had the highest shoot biomass and root volume. Compared with other plants, C. argentea increased the micropore volume of BRM. In addition, M. suaveolens showed a greater ability to regulate BRM salinity and alkalinity, resulting in a more significant decrease in the abundance of halophilic bacteria. A comprehensive evaluation based on gray relation analysis indicated that C. argentea and M. suaveolens are suitable pioneer plants for revegetation in BRM disposal areas.
Collapse
Affiliation(s)
- Xusheng Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 541000, Guilin, China
| | - Mengting Lin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Xuehong Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 541000, Guilin, China
| | - Guo Yu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Pingping Jiang
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 541000, Guilin, China
| | - Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 541000, Guilin, China.
| |
Collapse
|
5
|
Peng D, Chen X, Zhang S, Zeng G, Yan C, Luo H, Liu H, Xu H. Biochar enhances Cd mineralization through microbially induced carbonate precipitation as a soil remediation strategy for rice paddies. CHEMOSPHERE 2024; 366:143441. [PMID: 39362375 DOI: 10.1016/j.chemosphere.2024.143441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Microbial induced carbonate precipitation (MICP) is a promising technique for remediating Cd-contaminated soils. However, the high cost and potential disruption to soil micro-ecology due to the excessive urea addition remain significant challenges, limiting the broader application of MICP technology in agricultural soils. This study aims to improve the efficiency of Cd immobilization by MICP under low urea levels by investigating the stimulatory effect of porous materials on urease secretion by ureolytic bacteria. Results demonstrate that these materials, including biochar, activated carbon, zeolite, and oyster shell, can stimulate the growth of ureolytic bacteria strain kp-22, but not diatomite. Urease activity was greatly improved within 12 h, and the Cd removal rate reached over 82.12% within 0.5 h. Notably, biochar supported urealytic bacterium strain kp-22 (BCM) can steadily remove Cd in solution, with the Cd removal rate remaining close to 99% even after multiple additions of Cd. XRD analysis shows that Cd was removed by BCM due to the formation of CdCO3. Soil experiment reveals that BCM significantly decreased the bioavailable Cd content in both flooded and unflooded paddy soils, even when the urea addition was at a dosage suitable for agricultural production. 16S rRNA gene sequencing shows that the disturbance caused by BCM to the soil bacterial community was lower than that caused by strain kp-22 alone. These findings offer new insights into enhancing the efficiency of MICP for Cd remediation, increasing the potential for broader application of MICP technology in sustainable agriculture.
Collapse
Affiliation(s)
- Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Shuling Zhang
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Guoquan Zeng
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Chaoqun Yan
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Huanyan Luo
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
6
|
Tariq A, Ahmed A. Phosphate solubilization potential of PSB: an advance approach to enhance phosphorous availability for phytostimulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56174-56193. [PMID: 39256340 DOI: 10.1007/s11356-024-34934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Rhizosphere engineering approach is considered a quantum leap in plant sciences. The current study focused on investigating rhizobacterial efficiency to mobilize bioavailable phosphate from insoluble-phosphate source. Four efficient phosphate-solubilizing bacterial isolates, i.e., Pseudomonas songnenensis (GR3), Stutzerimonas stutzeri (HH2), Bacillus bingmayongensis (KH3), and Achromobacter aegrifaciens (MH1) were selected for the current study. Interactions between various physiological parameters and phosphate solubilization efficiency of isolates revealed that glucose significantly facilitated phosphorus solubilization at 37 ℃, with media having pH 7 and 0.5% phosphorous. Additionally, positive correlation among P-solubilization potential, acids produced, and pH was observed. Plant microbe-interaction analysis was performed to evaluate the efficiency of these bacterial isolates on various morpho-physiological responses of Zea mays L. For this purpose, various concentrations of tricalcium phosphate (TCP) (0, 10, 20, 30, 40, and 50 mM) were applied to plants in the presence and absence of bacterial isolates. The results showed that lower phosphate levels (10 and 20 mM) trigger shoot development and improve plant weight and leaf formation whereas higher phosphate concentrations (30 mM and above) stimulated the development of longer root system. The bacterial isolates, KH3 and HH2, were observed as efficient phosphate-solubilizing bacteria (PSB) that positively stimulated various plant growth and biochemical attributes over untreated plants. At lower phosphate levels, substantial increase of 92, 65, and 200% in shoot length, fresh weight, and number of leaves was recorded with bacterial isolate HH2, whereas, at 30 mM TCP, increase of 165% was observed in root length of plants treated with bacterial isolate KH3 compared to control. Similarly, at lower phosphate levels, increment of 57.3, 76.7, and 217% in phosphate, protein, and auxin content was recorded in plants treated with bacterial isolate HH2, and increase of 188.8% in total soluble carbohydrates was observed in plants treated with bacterial isolate KH3 as compared to control. Contrarily, increment in total chlorophyll content was most substantial (207%) by the bacterial isolate KH3 when provided with 30 mM TCP. Hence, the current study reviled that the use of these phosphates (KH3 and HH2)-solubilizing PGPR, as an efficient phytostimulator used for crop production in the replacement of chemical fertilizers, is carcinogenic and deteriorating our eco-system.
Collapse
Affiliation(s)
- Aqsa Tariq
- Institute of Botany, University of the Punjab, Quaid-E-Azam Campus, Lahore, 54590, Pakistan
| | - Ambreen Ahmed
- Institute of Botany, University of the Punjab, Quaid-E-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
7
|
Chandi K, Udomkun P, Boonupara T, Kaewlom P. Enhancing soil health, microbial count, and hydrophilic methomyl and hydrophobic lambda-cyhalothrin remediation with biochar and nano-biochar. Sci Rep 2024; 14:19551. [PMID: 39174647 PMCID: PMC11341857 DOI: 10.1038/s41598-024-70515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024] Open
Abstract
Pesticide contamination and soil degradation present significant challenges in agricultural ecosystems, driving extensive exploration of biochar (BC) and nano-biochar (NBC) as potential solutions. This study examines their effects on soil properties, microbial communities, and the fate of two key pesticides: the hydrophilic methomyl (MET) and the hydrophobic lambda-cyhalothrin (LCT), at different concentrations (1%, 3%, and 5% w w-1) in agricultural soil. Through a carefully designed seven-week black bean pot experiment, the results indicated that the addition of BC/NBC significantly influenced soil dynamics. Soil pH and moisture content (MC) notably increased, accompanied by a general rise in soil organic carbon (SOC) content. However, in BC5/NBC5 treatments, SOC declined after the 2nd or 3rd week. Microbial populations, including total plate count (TPC), phosphate-solubilizing bacteria (PSB), and nitrogen-fixing bacteria (NFB), showed dynamic responses to BC/NBC applications. BC1/NBC1 and BC3/NBC3 applications led to a significant increase in microbial populations, whereas BC5/NBC5 treatments experienced a decline after the initial surge. Furthermore, the removal efficiency of both MET and LCT increased with higher BC/NBC concentrations, with NBC demonstrating greater efficacy than BC. Degradation kinetics, modeled by a first-order equation, revealed that MET degraded faster than LCT. These findings underscore the profound impact of BC/NBC on pesticide dynamics and microbial communities, highlighting their potential to transform sustainable agricultural practices.
Collapse
Affiliation(s)
- Kanchana Chandi
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Puangrat Kaewlom
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
8
|
Li J, Xie N, Feng C, Wang C, Huang R, Tao Q, Tang X, Wu Y, Luo Y, Li Q, Li B. Pore size and organic carbon of biochar limit the carbon sequestration potential of Bacillus cereus SR. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116229. [PMID: 38508101 DOI: 10.1016/j.ecoenv.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Carbon-fixing functional strain-loaded biochar may have significant potential in carbon sequestration given the global warming situation. The carbon-fixing functional strain Bacillus cereus SR was loaded onto rice straw biochar pyrolyzed at different temperatures with the anticipation of clarifying the carbon sequestration performance of this strain on biochar and the interaction effects with biochar. During the culture period, the content of dissolved organic carbon (DOC), easily oxidizable organic carbon, and microbial biomass carbon in biochar changed. This finding indicated that B. cereus SR utilized organic carbon for survival and enhanced carbon sequestration on biochar to increase organic carbon, manifested by changes in CO2 emissions and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) enzyme activity. Linear regression analysis showed that the strain was likely to consume DOC on 300 °C biochar, although the Rubisco enzyme activity was higher. In contrast, the strain had a higher carbon sequestration potential on 500 °C biochar. Correlation analysis showed that Rubisco enzyme activity was controlled by the physical structure of the biochar. Our results highlight the differences in the survival mode and carbon sequestration potential of B. cereus SR on biochar pyrolyzed at different temperatures.
Collapse
Affiliation(s)
- Jie Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Ningyi Xie
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changchun Feng
- China National Tobacco Corporation Sichuan, Chengdu 610041, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Youlin Luo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
9
|
Jin C, Yang J, Chen B, Qu G, Li H, Wu F, Liu X, Liu Y, Kuang L, Li J. Soilization utilization of solid waste: Ecological regulation of phosphorus tailings-based soil with physicochemical improvement and Bacillus_cereus-addition. ENVIRONMENTAL RESEARCH 2023; 236:116856. [PMID: 37574102 DOI: 10.1016/j.envres.2023.116856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Extraction and utilization of effective phosphorus from solid waste have been an important approach for alleviating phosphorus resource shortage. The extraction of available phosphorus by microbial method with low cost, mild conditions and simple process has been drawing attention from the majority of research scholars. However, relevant studies on special microbial communities for effective phosphorus extraction from solid waste are less. In this work,a functional Bacillus_cereus strain screened from phosphate tailings, phosphate ore and forest rhizosphere soil was inoculated into phosphate tailings (PT), modified phosphate tailings (IS) and highland red soil (SS). Compared with SS, the water-holding properties, fertility, leaching toxicity and microbial community diversity of PT and IS with and without bacteria were analyzed. PT+, SS+ and IS+ (after adding bacteria to PT, SS and IS) showed moderately alkaline pH, and the available phosphorus content enhanced by 31.73%, 20.05% and 39.41% respectively. The leaching toxicity phosphate of PT+ and IS + decreased by 4.89 mg/kg and 2.61 mg/kg respectively, while that of SS + increased by 5.45 mg/kg, indicating differences in the phosphorus solubilization mechanism of Bacillus_cereus for different soils. Furthermore, the modification and bacteria treatment improved the relative abundance of Pedobacter, Alcaligenaceae and Pseudomonas, thus enhancing the phosphorus solubility of the PT bacterial community. This work may achieve efficient utilization and ecological restoration of phosphorus tailings-based soil and contribute to long-term sustainable agricultural development.
Collapse
Affiliation(s)
- Caiyue Jin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Jieqian Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Bangjin Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.
| | - Hailin Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Fenghui Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Xinxin Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Ye Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Lingrui Kuang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Junyan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| |
Collapse
|