1
|
Santos-Silva L, Roque WF, de Moura JM, Mello IS, de Carvalho LAL, Pinheiro DG, Bouzan RS, Brescovit AD, de Andrade RLT, da Silva GF, Battirola LD, Soares MA. Toxic metals in Amazonian soil modify the bacterial community associated with Diplopoda. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176915. [PMID: 39419211 DOI: 10.1016/j.scitotenv.2024.176915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Toxic metal pollution in the Amazon is a serious problem that reduces the quality of water, soil, air, and consequently alters communities of fauna, flora, and microbiota, harming human health and well-being. Our aim was to determine the impact of toxic metals on the structure of the bacterial community associated with Diplopoda in the Amazon rainforest. Animals were kept in microcosms contaminated with cadmium (50 mg.kg-1), mercury (35 mg.kg-1) and no toxic metal (control). The intestinal and molting chamber microbiota were accessed by culture-dependent and culture-independent methods (16S metabarcoding). The cultivated strains were identified, and their functional traits evaluated: secretion of enzymes, growth at different pH, resistance to metals and antibiotics, and ability to reduce toxic effects of metals on plants. Our research described Brachyurodesmus albus, a new species of Diplopoda. We obtained 177 isolates distributed in 35 genera and 61 species of bacteria (Pseudomonadota, Bacillota, Bacteroidota and Actinomycetota) associated with the gut and molting chamber of B. albus. Metabarcoding data provided a more robust access to the bacterial community, resulting in 24 phyla, 561 genera and 6792 ASVs. The presence of metal Cd and Hg alters the composition and abundance of bacteria associated with B. albus (PERMANOVA p < 0.05). The microhabitat (gut and molting chamber) harbours bacterial communities that differ in composition and abundance (PERMANOVA p < 0.05). The presence of Cd and Hg alters important metabolic pathways related to the prokaryotic defense system; antimicrobial resistance genes, endocytosis and secretion system, estimated by PICRUSt. Bacteria selected with high resistance to Cd and Hg buffer the toxic effect of metals on tomato seedlings. This work describes B. albus and concludes that its diverse bacterial microbiota is altered by soil contamination by toxic metals, as well as being an important repository for prospecting strains to be applied in bioremediation programs.
Collapse
Affiliation(s)
- Lorhaine Santos-Silva
- Laboratory of Biotechnology and Microbial Ecology (LABEM), Department of Biosciences, Federal University of Mato Grosso (UFMT), Av. Fernando Correa da Costa, 2367, 78060-900 Cuiabá, Mato Grosso, Brazil
| | - Wellington Fava Roque
- Laboratory of Biotechnology and Microbial Ecology (LABEM), Department of Biosciences, Federal University of Mato Grosso (UFMT), Av. Fernando Correa da Costa, 2367, 78060-900 Cuiabá, Mato Grosso, Brazil
| | - James Moraes de Moura
- Laboratory of Biotechnology and Microbial Ecology (LABEM), Department of Biosciences, Federal University of Mato Grosso (UFMT), Av. Fernando Correa da Costa, 2367, 78060-900 Cuiabá, Mato Grosso, Brazil; Federal Institute of Education, Science and Technology of Mato Grosso (IFMT), Av. Ver. Juliano da Costa Marques, S/N - Bela Vista, 78050-560 Cuiabá, Mato Grosso, Brazil
| | - Ivani Souza Mello
- Laboratory of Biotechnology and Microbial Ecology (LABEM), Department of Biosciences, Federal University of Mato Grosso (UFMT), Av. Fernando Correa da Costa, 2367, 78060-900 Cuiabá, Mato Grosso, Brazil
| | - Lucas Amoroso Lopes de Carvalho
- Bioinformatics Laboratory, Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, S/N - Vila Industrial, 14884-900 São Paulo, Brazil
| | - Daniel Guariz Pinheiro
- Bioinformatics Laboratory, Department of Agricultural, Livestock and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, S/N - Vila Industrial, 14884-900 São Paulo, Brazil
| | - Rodrigo Salvador Bouzan
- Laboratory of Zoological Collections (LCZ), Butantã, Av. Vital Brazil, 1500, 05503-900 São Paulo, Brazil
| | - Antonio Domingos Brescovit
- Laboratory of Zoological Collections (LCZ), Butantã, Av. Vital Brazil, 1500, 05503-900 São Paulo, Brazil
| | - Ricardo Lopes Tortorela de Andrade
- Interdisciplinary Chemical Research Laboratory (LIPEQ), Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Av. das Figueiras, 6.669, Aquarela das Artes, Sinop, Mato Grosso, Brazil
| | - Gilvan Ferreira da Silva
- Molecular Biology Laboratory, Embrapa Amazônia Ocidental, Highway AM 010 km 29 Road Manau, Itacoatiara - AM, 69010-970 Manaus, Amazonas, Brazil
| | - Leandro Dênis Battirola
- Biological Collection of Southern Amazonia (ABAM), Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso (UFMT), Av. das Figueiras, 6.669, Aquarela das Artes, Sinop, Mato Grosso, Brazil
| | - Marcos Antônio Soares
- Laboratory of Biotechnology and Microbial Ecology (LABEM), Department of Biosciences, Federal University of Mato Grosso (UFMT), Av. Fernando Correa da Costa, 2367, 78060-900 Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
2
|
Nweze JE, Gupta S, Salcher MM, Šustr V, Horváthová T, Angel R. Disruption of millipede-gut microbiota in E. pulchripes and G. connexa highlights the limited role of litter fermentation and the importance of litter-associated microbes for nutrition. Commun Biol 2024; 7:1204. [PMID: 39342029 PMCID: PMC11438867 DOI: 10.1038/s42003-024-06821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Millipedes are thought to depend on their gut microbiome for processing plant-litter-cellulose through fermentation, similar to many other arthropods. However, this hypothesis lacks sufficient evidence. To investigate this, we used inhibitors to disrupt the gut microbiota of juvenile Epibolus pulchripes (tropical, CH4-emitting) and Glomeris connexa (temperate, non-CH4-emitting) and isotopic labelling. Feeding the millipedes sterile or antibiotics-treated litter reduced faecal production and microbial load without major impacts on survival or weight. Bacterial diversity remained similar, with Bacteroidota dominant in E. pulchripes and Pseudomonadota in G. connexa. Sodium-2-bromoethanesulfonate treatment halted CH4 emissions in E. pulchripes, but it resumed after returning to normal feeding. Employing 13C-labeled leaf litter and RNA-SIP revealed a slow and gradual prokaryote labelling, indicating a significant density shift only by day 21. Surprisingly, labelling of the fungal biomass was somewhat quicker. Our findings suggest that fermentation by the gut microbiota is likely not essential for the millipede's nutrition.
Collapse
Affiliation(s)
- Julius Eyiuche Nweze
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Shruti Gupta
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Vladimír Šustr
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
| | - Terézia Horváthová
- Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
- Department of Aquatic Ecology, EAWAG, Dübendorf, Switzerland
| | - Roey Angel
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia.
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia.
| |
Collapse
|
3
|
El-Sayed MH, Gomaa AERF, Atta OM, Hassane AMA. Characteristics and kinetics of thermophilic actinomycetes' amylase production on agro-wastes and its application for ethanol fermentation. World J Microbiol Biotechnol 2024; 40:255. [PMID: 38926189 DOI: 10.1007/s11274-024-04009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/29/2024] [Indexed: 06/28/2024]
Abstract
Thermophilic actinomycetes are commonly found in extreme environments and can thrive and adapt to extreme conditions. These organisms exhibit substantial variation and garnered significant interest due to their remarkable enzymatic activities. This study evaluated the potential of Streptomyces griseorubens NBR14 and Nocardiopsis synnemataformans NBRM9 strains to produce thermo-stable amylase via submerged fermentation using wheat and bean straw. The Box-Behnken design was utilized to determine the optimum parameters for amylase biosynthesis. Subsequently, amylase underwent partial purification and characterization. Furthermore, the obtained hydrolysate was applied for ethanol fermentation using Saccharomyces cerevisiae. The optimal parameters for obtaining the highest amylase activity by NBR14 (7.72 U/mL) and NBRM9 (26.54 U/mL) strains were found to be 40 and 30 °C, pH values of 7, incubation time of 7 days, and substrate concentration (3 and 2 g/100 mL), respectively. The NBR14 and NBRM9 amylase were partially purified, resulting in specific activities of 251.15 and 144.84 U/mg, as well as purification factors of 3.91 and 2.69-fold, respectively. After partial purification, the amylase extracted from NBR14 and NBRM9 showed the highest activity level at pH values of 9 and 7 and temperatures of 50 and 60 °C, respectively. The findings also indicated that the maximum velocity (Vmax) for NBR14 and NBRM9 amylase were 57.80 and 59.88 U/mL, respectively, with Km constants of 1.39 and 1.479 mM. After 48 h, bioethanol was produced at concentrations of 5.95 mg/mL and 9.29 mg/mL from hydrolyzed wheat and bean straw, respectively, through fermentation with S. cerevisiae. Thermophilic actinomycetes and their α-amylase yield demonstrated promising potential for sustainable bio-ethanol production from agro-byproducts.
Collapse
Affiliation(s)
- Mohamed H El-Sayed
- Department of Biology, College of Science and Arts-Rafha, Northern Border University, Arar, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Abd El-Rahman F Gomaa
- Department of Botany and Microbiology, Faculty of Science, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt.
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.
| | - Omar Mohammad Atta
- Department of Botany and Microbiology, Faculty of Science, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Abdallah M A Hassane
- Department of Botany and Microbiology, Faculty of Science, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt.
| |
Collapse
|
4
|
Bautista-Cruz A, Aquino-Bolaños T, Hernández-Canseco J, Quiñones-Aguilar EE. Cellulolytic Aerobic Bacteria Isolated from Agricultural and Forest Soils: An Overview. BIOLOGY 2024; 13:102. [PMID: 38392320 PMCID: PMC10886624 DOI: 10.3390/biology13020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
This review provides insights into cellulolytic bacteria present in global forest and agricultural soils over a period of 11 years. It delves into the study of soil-dwelling cellulolytic bacteria and the enzymes they produce, cellulases, which are crucial in both soil formation and the carbon cycle. Forests and agricultural activities are significant contributors to the production of lignocellulosic biomass. Forest ecosystems, which are key carbon sinks, contain 20-30% cellulose in their leaf litter. Concurrently, the agricultural sector generates approximately 998 million tons of lignocellulosic waste annually. Predominant genera include Bacillus, Pseudomonas, Stenotrophomonas, and Streptomyces in forests and Bacillus, Streptomyces, Pseudomonas, and Arthrobacter in agricultural soils. Selection of cellulolytic bacteria is based on their hydrolysis ability, using artificial cellulose media and dyes like Congo red or iodine for detection. Some studies also measure cellulolytic activity in vitro. Notably, bacterial cellulose hydrolysis capability may not align with their cellulolytic enzyme production. Enzymes such as GH1, GH3, GH5, GH6, GH8, GH9, GH10, GH12, GH26, GH44, GH45, GH48, GH51, GH74, GH124, and GH148 are crucial, particularly GH48 for crystalline cellulose degradation. Conversely, bacteria with GH5 and GH9 often fail to degrade crystalline cellulose. Accurate identification of cellulolytic bacteria necessitates comprehensive genomic analysis, supplemented by additional proteomic and transcriptomic techniques. Cellulases, known for degrading cellulose, are also significant in healthcare, food, textiles, bio-washing, bleaching, paper production, ink removal, and biotechnology, emphasizing the importance of discovering novel cellulolytic strains in soil.
Collapse
Affiliation(s)
- Angélica Bautista-Cruz
- Instituto Politécnico Nacional, CIIDIR-Oaxaca, Hornos 1003, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico
| | - Teodulfo Aquino-Bolaños
- Instituto Politécnico Nacional, CIIDIR-Oaxaca, Hornos 1003, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico
| | - Jessie Hernández-Canseco
- Doctoral Programme in Conservation and Use of Natural Resources, Instituto Politécnico Nacional, CIIDIR-Oaxaca, Hornos 1003, Santa Cruz Xoxocotlán 71230, Oaxaca, Mexico
| | - Evangelina Esmeralda Quiñones-Aguilar
- Laboratorio de Fitopatología de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico
| |
Collapse
|
5
|
Nweze JE, Schweichhart JS, Angel R. Viral communities in millipede guts: Insights into the diversity and potential role in modulating the microbiome. Environ Microbiol 2024; 26:e16586. [PMID: 38356108 DOI: 10.1111/1462-2920.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Millipedes are important detritivores harbouring a diverse microbiome. Previous research focused on bacterial and archaeal diversity, while the virome remained neglected. We elucidated the DNA and RNA viral diversity in the hindguts of two model millipede species with distinct microbiomes: the tropical Epibolus pulchripes (methanogenic, dominated by Bacillota) and the temperate Glomeris connexa (non-methanogenic, dominated by Pseudomonadota). Based on metagenomic and metatranscriptomic assembled viral genomes, the viral communities differed markedly and preferentially infected the most abundant prokaryotic taxa. The majority of DNA viruses were Caudoviricetes (dsDNA), Cirlivirales (ssDNA) and Microviridae (ssDNA), while RNA viruses consisted of Leviviricetes (ssRNA), Potyviridae (ssRNA) and Eukaryotic viruses. A high abundance of subtypes I-C, I-B and II-C CRISPR-Cas systems was found, primarily from Pseudomonadota, Bacteroidota and Bacillota. In addition, auxiliary metabolic genes that modulate chitin degradation, vitamins and amino acid biosynthesis and sulphur metabolism were also detected. Lastly, we found low virus-to-microbe-ratios and a prevalence of lysogenic viruses, supporting a Piggyback-the-Winner dynamic in both hosts.
Collapse
Affiliation(s)
- Julius Eyiuche Nweze
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Johannes Sergej Schweichhart
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Roey Angel
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
| |
Collapse
|
6
|
Kang Y, Zhao S, Cheng H, Xu W, You R, Hu J. The distribution profiles of tetracycline resistance genes in rice: Comparisons using four genotypes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168359. [PMID: 37951253 DOI: 10.1016/j.scitotenv.2023.168359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
The potential transmission of antibiotic resistance genes (ARGs) from the rhizosphere to plants and humans poses a significant concern. This study aims to investigate the distribution of tetracycline resistance genes (TRGs) in rice using four genotypes and identify the primary source of TRGs in grains. Quantitative polymerase chain reaction (qPCR) was employed to determine the abundance of seven TRGs and intI1 in four rice varieties and three partitions during the jointing and heading stages, respectively. The analysis of the bacterial community was conducted to elucidate the underlying mechanism of the profiles of TRGs. It was observed that tetZ was predominantly present in the rhizosphere and endoroot, whereas tetX became dominant in grains. The relative abundances of TRGs and intI1 exhibited significant variations across both the variety and partition. However, no significant differences were observed in grains, where the abundances of TRGs were several orders of magnitude lower compared to those in the rhizosphere. Nevertheless, the potential risk of the dissemination of TRGs to humans, particularly those carried by potential pathogens in grains, warrants attention. The increased likelihood of TRGs accumulation in the rhizosphere and endoroot of hybrid rice varieties, as opposed to japonica varieties, may be attributed to the heightened metabolic activities of their roots. The significant associations observed between intI1 and TRGs, coupled with the substantial alterations in potential hosts for intI1 across various treatments, indicate that intI1-mediated horizontal gene transfer plays a role in the diverse range of bacterial hosts for TRGs. The study also revealed that rhizosphere bacteria during the jointing stage serve as the primary contributors of TRGs in grains through the endoroot junction. The findings indicate that Japonica rice varieties exhibit superior control over TRGs compared to hybrid varieties, emphasizing the need for early interventions throughout the entire growth period of rice.
Collapse
Affiliation(s)
- Yijun Kang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China; Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng, Jiangsu, China.
| | - Sumeng Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Haoyang Cheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Wenjie Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Ruiqiang You
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jian Hu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China.
| |
Collapse
|