1
|
Gajewski Z, McElmurray P, Wojdak J, McGregor C, Zeller L, Cooper H, Belden LK, Hopkins S. Nonrandom foraging and resource distributions affect the relationships between host density, contact rates and parasite transmission. Ecol Lett 2024; 27:e14385. [PMID: 38480959 DOI: 10.1111/ele.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/17/2024]
Abstract
Nonrandom foraging can cause animals to aggregate in resource dense areas, increasing host density, contact rates and pathogen transmission, but when should nonrandom foraging and resource distributions also have density-independent effects? Here, we used a factorial experiment with constant resource and host densities to quantify host contact rates across seven resource distributions. We also used an agent-based model to compare pathogen transmission when host movement was based on random foraging, optimal foraging or something between those states. Nonrandom foraging strongly depressed contact rates and transmission relative to the classic random movement assumptions used in most epidemiological models. Given nonrandom foraging in the agent-based model and experiment, contact rates and transmission increased with resource aggregation and average distance to resource patches due to increased host movement in search of resources. Overall, we describe three density-independent mechanisms by which host behaviour and resource distributions alter contact rate functions and pathogen transmission.
Collapse
Affiliation(s)
- Zachary Gajewski
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Philip McElmurray
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jeremy Wojdak
- Department of Biology, Radford University, Radford, Virginia, USA
| | - Cari McGregor
- Department of Biology, Radford University, Radford, Virginia, USA
| | - Lily Zeller
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Hannah Cooper
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Skylar Hopkins
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Wada Y, Iwasaki K, Ida TY, Yusa Y. Roles of the seasonal dynamics of ecosystem components in fluctuating indirect interactions on a rocky shore. Ecology 2017; 98:1093-1103. [PMID: 28112400 DOI: 10.1002/ecy.1743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/14/2016] [Accepted: 01/04/2017] [Indexed: 11/06/2022]
Abstract
Accurately evaluating the strengths of direct (i.e., consumptive and non-consumptive) effects and indirect (density- and trait-mediated) interactions is crucial for understanding the mechanisms of the maintenance and dynamics of an ecosystem. However, an in situ evaluation has not been conducted for a long enough period of time to fully consider the seasonality and life histories of the community components. We conducted a 9-month (from summer to spring) field experiment in an intertidal rocky shore ecosystem involving the carnivorous snail, Thais clavigera, its prey, the limpet Siphonaria sirius, and their resources, the cyanobacterium (blue-green alga) Lithoderma sp. and the green algae Ulva spp. From summer to autumn, the predation pressure was high, and the consumptive and non-consumptive effects of the predator had opposite (positive and negative, respectively) effects on the prey. Both the density- and trait-mediated indirect interactions decreased the coverage of Lithoderma and increased the coverage of Ulva. As the predation pressure decreased in autumn, the predator affected both the adults and the new recruits of the prey. The trait-mediated interactions still existed, but the density-mediated interactions were not detected. From winter to spring, no direct effects or indirect interactions were detected because of the low predation pressure. Our investigation highlights previously unnoticed processes-showing that the strengths of the direct effects and indirect interactions fluctuate greatly with the seasonality of the ecosystem components.
Collapse
Affiliation(s)
- Yoko Wada
- Faculty of Science, Nara Women's University, Kitauoya-nishi, Nara, 6308506 Japan
| | - Keiji Iwasaki
- Institute for Natural Science, Nara University, 1500 Misasagi-cho, Nara, 6318502 Japan
| | - Takashi Y Ida
- Faculty of Science, Nara Women's University, Kitauoya-nishi, Nara, 6308506 Japan
| | - Yoichi Yusa
- Faculty of Science, Nara Women's University, Kitauoya-nishi, Nara, 6308506 Japan
| |
Collapse
|
3
|
Matassa CM, Trussell GC. Prey state shapes the effects of temporal variation in predation risk. Proc Biol Sci 2015; 281:20141952. [PMID: 25339716 DOI: 10.1098/rspb.2014.1952] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ecological impacts of predation risk are influenced by how prey allocate foraging effort across periods of safety and danger. Foraging decisions depend on current danger, but also on the larger temporal, spatial or energetic context in which prey manage their risks of predation and starvation. Using a rocky intertidal food chain, we examined the responses of starved and fed prey (Nucella lapillus dogwhelks) to different temporal patterns of risk from predatory crabs (Carcinus maenas). Prey foraging activity declined during periods of danger, but as dangerous periods became longer, prey state altered the magnitude of risk effects on prey foraging and growth, with likely consequences for community structure (trait-mediated indirect effects on basal resources, Mytilus edulis mussels), prey fitness and trophic energy transfer. Because risk is inherently variable over time and space, our results suggest that non-consumptive predator effects may be most pronounced in productive systems where prey can build energy reserves during periods of safety and then burn these reserves as 'trophic heat' during extended periods of danger. Understanding the interaction between behavioural (energy gain) and physiological (energy use) responses to risk may illuminate the context dependency of trait-mediated trophic cascades and help explain variation in food chain length.
Collapse
Affiliation(s)
- Catherine M Matassa
- Marine Science Center, Northeastern University, East Point, Nahant, MA 01908, USA
| | - Geoffrey C Trussell
- Marine Science Center, Northeastern University, East Point, Nahant, MA 01908, USA
| |
Collapse
|
4
|
Nonconsumptive Effects of Predation and Impaired Chemosensory Risk Assessment on an Aquatic Prey Species. INTERNATIONAL JOURNAL OF ECOLOGY 2015. [DOI: 10.1155/2015/894579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Weak levels of acidity impair chemosensory risk assessment by aquatic species which may result in increased predator mortalities in the absence of compensatory avoidance mechanisms. Using replicate populations of wild juvenile Atlantic salmon (Salmo salar) in neutral and acidic streams, we conducted a series of observational studies and experiments to identify differences in behaviours that may compensate for the loss of chemosensory information on predation risk. Comparing the behavioural strategies of fish between neutral and acidic streams may elucidate the influence of environmental degradation on nonconsumptive effects (NCEs) of predation. Salmon in acidic streams are more active during the day than their counterparts in neutral streams, and are more likely to avoid occupying territories offering fewer physical refugia from predators. Captive cross-population transplant experiments indicate that at equal densities, salmon in acidic streams do not demonstrate relative decreases in growth rate as a result of their different behavioural strategies. Instead, altering diel activity patterns to maximize visual information use and occupying relatively safer territories appear sufficient to offset increased predation risk in acidic streams. Additional strategies such as elevated foraging rates during active periods or adopting riskier foraging tactics are necessary to account for the observed similarities in growth rates.
Collapse
|
5
|
Cacciatore LC, Guerrero NV, Cochón AC. Cholinesterase and carboxylesterase inhibition in Planorbarius corneus exposed to binary mixtures of azinphos-methyl and chlorpyrifos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 128-129:124-134. [PMID: 23291050 DOI: 10.1016/j.aquatox.2012.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 10/06/2012] [Accepted: 12/09/2012] [Indexed: 06/01/2023]
Abstract
Though pesticide mixtures are commonly encountered in fresh water systems, the knowledge of their effects on non-target aquatic species is scarce. The present investigation was undertaken to explore the in vivo inhibition of the freshwater gastropod snail Planorbarius corneus cholinesterase (ChE) and carboxylesterases (CES) activities by the organophosphorus pesticides azinphos-methyl (AZM) and chlorpyrifos (CPF). To this end, snails were exposed for 48 h to different concentrations of AZM and CPF in single-chemical and binary-mixture studies, and ChE and CES activities were measured in the whole soft body tissues and hemolymph. ChE activity was measured with acetylthiocholine as substrate and CES activity was measured with four substrates: p-nitrophenyl acetate, p-nitrophenyl butyrate, 1- and 2-naphthyl acetate. Single-chemical experiments showed that CPF was a more potent inhibitor of ChE activity than AZM (350 and 27 times for the whole soft tissue and hemolymph, respectively). CES were 15 times more sensitive than ChE when the activities were measured in the whole soft tissue of the animals exposed to AZM. Based on a default assumption of concentration addition, P. corneus snails were exposed to mixtures of AZM+CPF designed to yield predicted soft tissue ChE inhibitions of 31% (mixture 1), 50% (mixture 2) and 61% (mixture 3). Results showed that ChE inhibition produced by mixture 1 followed a model of concentration addition. In contrast, the other mixtures showed synergism, both in whole soft tissue and hemolymph. In addition, results obtained when the snails were exposed sequentially to the pesticides showed that the sequence AZM/CPF produced at 48 h a higher ChE inhibition than the sequence CPF/CPF. A range of metabolic pathways and responses associated with bioactivation or detoxification may play important roles in organophosphorus interactions. In particular, the data presented in the present study indicate that CES enzymes would be important factors in determining the effects of the mixtures of OPs on P. corneus ChE activity.
Collapse
Affiliation(s)
- Luis Claudio Cacciatore
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | |
Collapse
|
6
|
Higginson AD, Fawcett TW, Trimmer PC, McNamara JM, Houston AI. Generalized Optimal Risk Allocation: Foraging and Antipredator Behavior in a Fluctuating Environment. Am Nat 2012; 180:589-603. [DOI: 10.1086/667885] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
The effect of chemical signal of predatory fish and water bug on the morphology and development of Elachistocleis bicolor tadpoles (Anura: Microhylidae). Biologia (Bratisl) 2012. [DOI: 10.2478/s11756-012-0082-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Cacciatore LC, Kristoff G, Verrengia Guerrero NR, Cochón AC. Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneus. CHEMOSPHERE 2012; 88:450-458. [PMID: 22436584 DOI: 10.1016/j.chemosphere.2012.02.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 01/31/2012] [Accepted: 02/17/2012] [Indexed: 05/31/2023]
Abstract
In this study, the cholinesterase (ChE) and carboxylesterase (CES) activities present in whole organism homogenates from Planorbarius corneus and their in vitro sensitivity to organophosphorous (OP) pesticides were studied. Firstly, a characterization of ChE and CES activities using different substrates and selective inhibitors was performed. Secondly, the effects of azinphos-methyl oxon (AZM-oxon) and chlorpyrifos oxon (CPF-oxon), the active oxygen analogs of the OP insecticides AZM and CPF, on ChE and CES activities were evaluated. Finally, it was analyzed whether binary mixtures of the pesticide oxons cause additive, antagonistic or synergistic ChE inhibition in P. corneus homogenates. The results showed that the extracts of P. corneus preferentially hydrolyzed acetylthiocholine (AcSCh) over propionylthiocholine (PrSCh) and butyrylthiocholine (BuSCh). Besides, AcSCh hydrolyzing activity was inhibited by low concentrations of BW284c51, a selective inhibitor of AChE activity, and also by high concentrations of substrate. These facts suggest the presence of a typical AChE activity in this species. However, the different dose-response curves observed with BW284c51 when using PrSCh or BuSCh instead of AcSCh suggest the presence of at least another ChE activity. This would probably correspond to an atypical BuChE. Regarding CES activity, the highest specific activity was obtained when using 2-naphthyl acetate (2-NA), followed by 1-naphthyl acetate (1-NA); p-nitrophenyl acetate (p-NPA), and p-nitrophenyl butyrate (p-NPB). The comparison of the IC(50) values revealed that, regardless of the substrate used, CES activity was approximately one order of magnitude more sensitive to AZM-oxon than ChE activity. Although ChE activity was very sensitive to CPF-oxon, CES activity measured with 1-NA, 2-NA, and p-NPA was poorly inhibited by this pesticide. In contrast, CES activity measured with p-NPB was equally sensitive to CPF-oxon than ChE activity. Several specific binary combinations of AZM-oxon and CPF-oxon caused a synergistic effect on the ChE inhibition in P. corneus homogenates. The degree of synergism tended to increase as the ratio of AZM-oxon to CPF-oxon decreased. These results suggest that synergism is likely to occur in P. corneus snails exposed in vivo to binary mixtures of the OPs AZM and CPF.
Collapse
Affiliation(s)
- Luis Claudio Cacciatore
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
9
|
Ahlgren J, Brönmark C. Fleeing towards death - leech-induced behavioural defences increase freshwater snail susceptibility to predatory fish. OIKOS 2012. [DOI: 10.1111/j.1600-0706.2012.20420.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Trussell GC, Matassa CM, Luttbeg B. The effects of variable predation risk on foraging and growth: Less risk is not necessarily better. Ecology 2011; 92:1799-806. [PMID: 21939076 DOI: 10.1890/10-2222.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Geoffrey C Trussell
- Northeastern University, Marine Science Center, 430 Nahant Road, Nahant, Massachusetts 01908, USA.
| | | | | |
Collapse
|