1
|
Gayathiri E, Prakash P, Kumaravel P, Jayaprakash J, Ragunathan MG, Sankar S, Pandiaraj S, Thirumalaivasan N, Thiruvengadam M, Govindasamy R. Computational approaches for modeling and structural design of biological systems: A comprehensive review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 185:17-32. [PMID: 37821048 DOI: 10.1016/j.pbiomolbio.2023.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 10/13/2023]
Abstract
The convergence of biology and computational science has ushered in a revolutionary era, revolutionizing our understanding of biological systems and providing novel solutions to global problems. The field of genetic engineering has facilitated the manipulation of genetic codes, thus providing opportunities for the advancement of innovative disease therapies and environmental enhancements. The emergence of bio-molecular simulation represents a significant advancement in this particular field, as it offers the ability to gain microscopic insights into molecular-level biological processes over extended periods. Biomolecular simulation plays a crucial role in advancing our comprehension of organismal mechanisms by establishing connections between molecular structures, interactions, and biological functions. The field of computational biology has demonstrated its significance in deciphering intricate biological enigmas through the utilization of mathematical models and algorithms. The process of decoding the human genome has resulted in the advancement of therapies for a wide range of genetic disorders, while the simulation of biological systems contributes to the identification of novel pharmaceutical compounds. The potential of biomolecular simulation and computational biology is vast and limitless. As the exploration of the underlying principles that govern living organisms progresses, the potential impact of this understanding on cancer treatment, environmental restoration, and other domains is anticipated to be transformative. This review examines the notable advancements achieved in the field of computational biology, emphasizing its potential to revolutionize the comprehension and enhancement of biological systems.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai, 42, Tamil Nadu, India
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem, 636011, Tamil Nadu, India
| | - Priya Kumaravel
- Department of Biotechnology, St. Joseph College (Arts & Science), Kovur, Chennai, Tamil Nadu, India
| | - Jayanthi Jayaprakash
- Department of Advanced Zoology and Biotechnology, Guru Nanak College, Chennai, Tamil Nadu, India
| | | | - Sharmila Sankar
- Department of Advanced Zoology and Biotechnology, Guru Nanak College, Chennai, Tamil Nadu, India
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMTAS), Chennai, 600077, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India.
| |
Collapse
|
2
|
Deep Ecology, Biodiversity and Assisted Natural Regeneration of European Hemiboreal Forests. DIVERSITY 2022. [DOI: 10.3390/d14100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Climate change and the associated disturbances have disrupted the relative stability of tree species composition in hemiboreal forests. The natural ecology of forest communities, including species occurrence and composition, forest structure, and food webs, have been affected. Yet, the hemiboreal forest zone of Lithuania is the least studied in the country for climate change risks and possible management adaption techniques. This problem is further complicated by the fact that Lithuania uses a traditional centralised forest management system. Therefore, this work proposes assisted natural regeneration (ANR) of tree species as a more viable means of building hemiboreal forest resilience to cope with future climate change risks. The ANR model implies that forest management is localised in local communities, to provide opportunities for the local people to participate in forest management based on local knowledge, thereby facilitating the transition from cultural diversity to biodiversity. Further, ANR is grounded on an ethical framework—deep ecology—to provide ethical justification for the proposal to transit forest management in Lithuania from the traditional centralised segregated system to a community-driven practice. The work combines the theories of ANR, deep ecology, and hemiboreal forest knowledge systems to provide complementary information that builds on gaps in the existing literature. This study is unique in that no previous work has linked ANR and deep ecology in the context of Lithuania’s forest ecosystems.
Collapse
|