1
|
Lei L, Wang YF, Chen CY, Wang YT, Zhang Y. Novel insight into astrocyte-mediated gliotransmission modulates the synaptic plasticity in major depressive disorder. Life Sci 2024; 355:122988. [PMID: 39153595 DOI: 10.1016/j.lfs.2024.122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Major depressive disorder (MDD) is a form of glial cell-based synaptic dysfunction disease in which glial cells interact closely with neuronal synapses and perform synaptic information processing. Glial cells, particularly astrocytes, are active components of the brain and are responsible for synaptic activity through the release gliotransmitters. A reduced density of astrocytes and astrocyte dysfunction have both been identified the brains of patients with MDD. Furthermore, gliotransmission, i.e., active information transfer mediated by gliotransmitters between astrocytes and neurons, is thought to be involved in the pathogenesis of MDD. However, the mechanism by which astrocyte-mediated gliotransmission contributes to depression remains unknown. This review therefore summarizes the alterations in astrocytes in MDD, including astrocyte marker, connexin 43 (Cx43) expression, Cx43 gap junctions, and Cx43 hemichannels, and describes the regulatory mechanisms of astrocytes involved in synaptic plasticity. Additionally, we investigate the mechanisms acting of the glutamatergic, gamma-aminobutyric acidergic, and purinergic systems that modulate synaptic function and the antidepressant mechanisms of the related receptor antagonists. Further, we summarize the roles of glutamate, gamma-aminobutyric acid, d-serine, and adenosine triphosphate in depression, providing a basis for the identification of diagnostic and therapeutic targets for MDD.
Collapse
Affiliation(s)
- Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Szopa A, Bogatko K, Serefko A, Herbet M, Ostrowska-Leśko M, Wróbel A, Radziwoń-Zaleska M, Dudka J, Wlaź P, Poleszak E. Antidepressant effects of selective adenosine receptor antagonists targeting the A1 and A2A receptors administered jointly with NMDA receptor ligands: behavioral, biochemical and molecular investigations in mice. Pharmacol Rep 2024; 76:1012-1031. [PMID: 39048810 PMCID: PMC11387455 DOI: 10.1007/s43440-024-00627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The objective of the study was to ascertain the antidepressant potential of the co-administration of NMDA receptor ligands and selective adenosine A1 and A2A receptor antagonists. METHODS The forced swim test (FST) and spontaneous locomotor activity test were carried out in adult male naïve mice. Before the behavioral testing, animals received DPCPX (a selective adenosine A1 receptor antagonist, 1 mg/kg) or istradefylline (a selective adenosine A2A receptor antagonist, 0.5 mg/kg) in combination with L-701,324 (a potent NMDA receptor antagonist, 1 mg/kg), D-cycloserine (a partial agonist at the glycine recognition site of NMDA receptor, 2.5 mg/kg), CGP 37849 (a competitive NMDA receptor antagonist, 0.3 mg/kg) or MK-801 (a non-competitive NMDA receptor antagonist, 0.05 mg/kg). Additionally, serum BDNF level and the mRNA level of the Adora1, Comt, and Slc6a15 genes in the murine prefrontal cortex were determined. RESULTS The obtained results showed that DPCPX and istradefylline administered jointly with NMDA receptor ligands (except for DPCPX + D-cycloserine combination) produced an antidepressant effect in the FST in mice without enhancement in spontaneous motility of animals. An elevation in BDNF concentration was noted in the D-cycloserine-treated group. Adora1 expression increased with L-701,324, DPCPX + D-cycloserine, and DPCPX + CGP 37849, while D-cycloserine, CGP 37849, and MK-801 led to a decrease. Comt mRNA levels dropped with DPCPX + L-701,324, istradefylline + L-701,324/CGP 37849 but increased with D-cycloserine, MK-801, CGP 37849 and DPCPX + MK-801/ CGP 37849. Slc6a15 levels were reduced by D-cycloserine, DPCPX + L-701,324 but rose with DPCPX + CGP 37849/MK-801 and istradefylline + D-cycloserine/MK-801/CGP 37849. CONCLUSION Our study suggests that selective antagonists of adenosine receptors may enhance the antidepressant efficacy of NMDA receptor ligands highlighting a potential synergistic interaction between the adenosinergic and glutamatergic systems. Wherein, A2A receptor antagonists are seen as more promising candidates in this context. Given the intricate nature of changes in BDNF levels and the expression of Adora1, Comt, and Slc6a15 seen after drug combinations exerting antidepressant properties, further research and integrative approaches are crucial understand better the mechanisms underlying their antidepressant action.
Collapse
Affiliation(s)
- Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki 7, Lublin, PL, 20-093, Poland
| | - Karolina Bogatko
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, Lublin, PL, 20-093, Poland.
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki 7, Lublin, PL, 20-093, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, Lublin, PL, 20-093, Poland
| | - Marta Ostrowska-Leśko
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, Lublin, PL, 20-093, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, Lublin, PL, 20-090, Poland
| | - Maria Radziwoń-Zaleska
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, Warszawa, PL, 00-665, Poland
| | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, Lublin, PL, 20-093, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin, PL, 20-033, Poland
| | - Ewa Poleszak
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, Lublin, PL, 20-093, Poland
| |
Collapse
|
3
|
von Mücke-Heim IA, Pape JC, Grandi NC, Erhardt A, Deussing JM, Binder EB. Multiomics and blood-based biomarkers of electroconvulsive therapy in severe and treatment-resistant depression: study protocol of the DetECT study. Eur Arch Psychiatry Clin Neurosci 2024; 274:673-684. [PMID: 37644215 PMCID: PMC10995021 DOI: 10.1007/s00406-023-01647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/07/2023] [Indexed: 08/31/2023]
Abstract
Electroconvulsive therapy (ECT) is commonly used to treat treatment-resistant depression (TRD). However, our knowledge of the ECT-induced molecular mechanisms causing clinical improvement is limited. To address this issue, we developed the single-center, prospective observational DetECT study ("Multimodal Biomarkers of ECT in TRD"; registered 18/07/2022, www.clinicalTrials.gov , NCT05463562). Its objective is to identify molecular, psychological, socioeconomic, and clinical biomarkers of ECT response in TRD. We aim to recruit n = 134 patients in 3 years. Over the course of 12 biweekly ECT sessions (± 7 weeks), participant blood is collected before and 1 h after the first and seventh ECT and within 1 week after the twelfth session. In pilot subjects (first n = 10), additional blood draws are performed 3 and 6 h after the first ECT session to determine the optimal post-ECT blood draw interval. In blood samples, multiomic analyses are performed focusing on genotyping, epigenetics, RNA sequencing, neuron-derived exosomes, purines, and immunometabolics. To determine clinical response and side effects, participants are asked weekly to complete four standardized self-rating questionnaires on depressive and somatic symptoms. Additionally, clinician ratings are obtained three times (weeks 1, 4, and 7) within structured clinical interviews. Medical and sociodemographic data are extracted from patient records. The multimodal data collected are used to perform the conventional statistics as well as mixed linear modeling to identify clusters that link biobehavioural measures to ECT response. The DetECT study can provide important insight into the complex mechanisms of ECT in TRD and a step toward biologically informed and data-driven-based ECT biomarkers.
Collapse
Affiliation(s)
- Iven-Alex von Mücke-Heim
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
- Department of Psychiatry, Clinical Anxiety Research, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Julius C Pape
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany.
- Department of Psychiatry, Clinical Anxiety Research, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany.
| | - Norma C Grandi
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
- Department of Psychiatry, Clinical Anxiety Research, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Angelika Erhardt
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
- Department of Psychiatry, Clinical Anxiety Research, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
- Department of Psychiatry, Clinical Anxiety Research, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
- Department of Psychiatry, Clinical Anxiety Research, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| |
Collapse
|
4
|
Daniels SD, Boison D. Bipolar mania and epilepsy pathophysiology and treatment may converge in purine metabolism: A new perspective on available evidence. Neuropharmacology 2023; 241:109756. [PMID: 37820933 PMCID: PMC10841508 DOI: 10.1016/j.neuropharm.2023.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Decreased ATPergic signaling is an increasingly recognized pathophysiology in bipolar mania disease models. In parallel, adenosine deficit is increasingly recognized in epilepsy pathophysiology. Under-recognized ATP and/or adenosine-increasing mechanisms of several antimanic and antiseizure therapies including lithium, valproate, carbamazepine, and ECT suggest a fundamental pathogenic role of adenosine deficit in bipolar mania to match the established role of adenosine deficit in epilepsy. The depletion of adenosine-derivatives within the purine cycle is expected to result in a compensatory increase in oxopurines (uric acid precursors) and secondarily increased uric acid, observed in both bipolar mania and epilepsy. Cortisol-based inhibition of purine conversion to adenosine-derivatives may be reflected in observed uric acid increases and the well-established contribution of cortisol to both bipolar mania and epilepsy pathology. Cortisol-inhibited conversion from IMP to AMP as precursor of both ATP and adenosine may represent a mechanism for treatment resistance common in both bipolar mania and epilepsy. Anti-cortisol therapies may therefore augment other treatments both in bipolar mania and epilepsy. Evidence linking (i) adenosine deficit with a decreased need for sleep, (ii) IMP/cGMP excess with compulsive hypersexuality, and (iii) guanosine excess with grandiose delusions may converge to suggest a novel theory of bipolar mania as a condition characterized by disrupted purine metabolism. The potential for disease-modification and prevention related to adenosine-mediated epigenetic changes in epilepsy may be mirrored in mania. Evaluating the purinergic effects of existing agents and validating purine dysregulation may improve diagnosis and treatment in bipolar mania and epilepsy and provide specific targets for drug development.
Collapse
Affiliation(s)
- Scott D Daniels
- Hutchings Psychiatric Center, New York State Office of Mental Health, Syracuse, NY, 13210, USA
| | - Detlev Boison
- Dept. of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
5
|
Kroll T, Grözinger M, Matusch A, Elmenhorst D, Novakovic A, Schneider F, Bauer A. Effects of electroconvulsive therapy on cerebral A 1 adenosine receptor availability: a PET study in patients suffering from treatment-resistant major depressive disorder. Front Psychiatry 2023; 14:1228438. [PMID: 37520217 PMCID: PMC10380952 DOI: 10.3389/fpsyt.2023.1228438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Sleep deprivation and electroconvulsive therapy (ECT) effectively ameliorate symptoms in major depressive disorder (MDD). In rodents, both are associated with an enhancement of cerebral adenosine levels, which in turn likely influence adenosinergic receptor expression. The aim of the current study was to investigate cerebral A1 adenosine receptor (A1AR) availability in patients with MDD as a potential mediating factor of antidepressant effects of ECT using [18F]CPFPX and positron emission tomography (PET). Methods Regional A1AR availability was determined before and after a series of ECT applications (mean number ± SD 10.4 ± 1.2) in 14 subjects (4 males, mean age 49.5 ± 11.8 years). Clinical outcome, measured by neuropsychological testing, and ECT parameters were correlated with changes in A1AR availability. Results ECT had a strong antidepressive effect (p < 0.01) while on average cerebral A1AR availability remained unaltered between pre-and post-ECT conditions (F = 0.65, p = 0.42, mean difference ± SD 3.93% ± 22.7%). There was no correlation between changes in clinical outcome parameters and regional A1AR availability, although individual patients showed striking bidirectional alterations of up to 30-40% in A1AR availability after ECT. Solely, for the mean seizure quality index of the applied ECTs a significant association with changes in A1AR availability was found (rs = -0.6, p = 0.02). Discussion In the present study, therapeutically effective ECT treatment did not result in coherent changes of A1AR availability after a series of ECT treatments. These findings do not exclude a potential role for cerebral A1ARs in ECT, but shift attention to rather short-termed and adaptive mechanisms during ECT-related convulsive effects.
Collapse
Affiliation(s)
- Tina Kroll
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Michael Grözinger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Andreas Matusch
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - David Elmenhorst
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Ana Novakovic
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Frank Schneider
- University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Bauer
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
6
|
Koizumi S. Glial Purinergic Signals and Psychiatric Disorders. Front Cell Neurosci 2022; 15:822614. [PMID: 35069121 PMCID: PMC8766327 DOI: 10.3389/fncel.2021.822614] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022] Open
Abstract
Emotion-related neural networks are regulated in part by the activity of glial cells, and glial dysfunction can be directly related to emotional diseases such as depression. Here, we discuss three different therapeutic strategies involving astrocytes that are effective for treating depression. First, the antidepressant, fluoxetine, acts on astrocytes and increases exocytosis of ATP. This has therapeutic effects via brain-derived neurotrophic factor-dependent mechanisms. Second, electroconvulsive therapy is a well-known treatment for drug-resistant depression. Electroconvulsive therapy releases ATP from astrocytes to induce leukemia inhibitory factors and fibroblast growth factor 2, which leads to antidepressive actions. Finally, sleep deprivation therapy is well-known to cause antidepressive effects. Sleep deprivation also increases release of ATP, whose metabolite, adenosine, has antidepressive effects. These independent treatments share the same mechanism, i.e., ATP release from astrocytes, indicating an essential role of glial purinergic signals in the pathogenesis of depression.
Collapse
Affiliation(s)
- Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- GLIA Center, University of Yamanashi, Yamanashi, Japan
- *Correspondence: Schuichi Koizumi
| |
Collapse
|
7
|
Szopa A, Socała K, Serefko A, Doboszewska U, Wróbel A, Poleszak E, Wlaź P. Purinergic transmission in depressive disorders. Pharmacol Ther 2021; 224:107821. [PMID: 33607148 DOI: 10.1016/j.pharmthera.2021.107821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Purinergic signaling involves the actions of purine nucleotides and nucleosides (such as adenosine) at P1 (adenosine), P2X, and P2Y receptors. Here, we present recent data contributing to a comprehensive overview of the association between purinergic signaling and depression. We start with background information on adenosine production and metabolism, followed by a detailed characterization of P1 and P2 receptors, with an emphasis on their expression and function in the brain as well as on their ligands. We provide data suggestive of altered metabolism of adenosine in depressed patients, which might be regarded as a disease biomarker. We then turn to considerable amount of preclinical/behavioral data obtained with the aid of the forced swim test, tail suspension test, learned helplessness model, or unpredictable chronic mild stress model and genetic activation/inactivation of P1 or P2 receptors as well as nonselective or selective ligands of P1 or P2 receptors. We also aimed to discuss the reason underlying discrepancies observed in such studies.
Collapse
Affiliation(s)
- Aleksandra Szopa
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Anna Serefko
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland
| | - Ewa Poleszak
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland.
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
8
|
Gomes JI, Farinha-Ferreira M, Rei N, Gonçalves-Ribeiro J, Ribeiro JA, Sebastião AM, Vaz SH. Of adenosine and the blues: The adenosinergic system in the pathophysiology and treatment of major depressive disorder. Pharmacol Res 2020; 163:105363. [PMID: 33285234 DOI: 10.1016/j.phrs.2020.105363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is the foremost cause of global disability, being responsible for enormous personal, societal, and economical costs. Importantly, existing pharmacological treatments for MDD are partially or totally ineffective in a large segment of patients. As such, the search for novel antidepressant drug targets, anchored on a clear understanding of the etiological and pathophysiological mechanisms underpinning MDD, becomes of the utmost importance. The adenosinergic system, a highly conserved neuromodulatory system, appears as a promising novel target, given both its regulatory actions over many MDD-affected systems and processes. With this goal in mind, we herein review the evidence concerning the role of adenosine as a potential player in pathophysiology and treatment of MDD, combining data from both human and animal studies. Altogether, evidence supports the assertions that the adenosinergic system is altered in both MDD patients and animal models, and that drugs targeting this system have considerable potential as putative antidepressants. Furthermore, evidence also suggests that modifications in adenosine signaling may have a key role in the effects of several pharmacological and non-pharmacological antidepressant treatments with demonstrated efficacy, such as electroconvulsive shock, sleep deprivation, and deep brain stimulation. Lastly, it becomes clear from the available literature that there is yet much to study regarding the role of the adenosinergic system in the pathophysiology and treatment of MDD, and we suggest several avenues of research that are likely to prove fruitful.
Collapse
Affiliation(s)
- Joana I Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
9
|
Serchov T, Schwarz I, Theiss A, Sun L, Holz A, Döbrössy MD, Schwarz MK, Normann C, Biber K, van Calker D. Enhanced adenosine A 1 receptor and Homer1a expression in hippocampus modulates the resilience to stress-induced depression-like behavior. Neuropharmacology 2019; 162:107834. [PMID: 31682853 DOI: 10.1016/j.neuropharm.2019.107834] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/19/2019] [Accepted: 10/29/2019] [Indexed: 11/30/2022]
Abstract
Resilience to stress is critical for the development of depression. Enhanced adenosine A1 receptor (A1R) signaling mediates the antidepressant effects of acute sleep deprivation (SD). However, chronic SD causes long-lasting upregulation of brain A1R and increases the risk of depression. To investigate the effects of A1R on mood, we utilized two transgenic mouse lines with inducible A1R overexpression in forebrain neurons. These two lines have identical levels of A1R increase in the cortex, but differ in the transgenic A1R expression in the hippocampus. Switching on the transgene promotes robust antidepressant and anxiolytic effects in both lines. The mice of the line without transgenic A1R overexpression in the hippocampus (A1Hipp-) show very strong resistance towards development of stress-induced chronic depression-like behavior. In contrast, the mice of the line in which A1R upregulation extends to the hippocampus (A1Hipp+), exhibit decreased resilience to depression as compared to A1Hipp-. Similarly, automatic analysis of reward behavior of the two lines reveals that depression resistant A1Hipp-transgenic mice exhibit high sucrose preference, while mice of the vulnerable A1Hipp + line developed stress-induced anhedonic phenotype. The A1Hipp + mice have increased Homer1a expression in hippocampus, correlating with impaired long-term potentiation in the CA1 region, mimicking the stressed mice. Furthermore, virus-mediated overexpression of Homer1a in the hippocampus decreases stress resilience. Taken together our data indicate for first time that increased expression of A1R and Homer1a in the hippocampus modulates the resilience to stress-induced depression and thus might potentially mediate the detrimental effects of chronic sleep restriction on mood.
Collapse
Affiliation(s)
- Tsvetan Serchov
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| | - Inna Schwarz
- Functional Neuroconnectomics Group, Department of Experimental Epileptology and Cognition Research, Life and Brain Centre, University of Bonn, Medical School, 53105, Bonn, Germany
| | - Alice Theiss
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Lu Sun
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany; Department Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, 9713, AV Groningen, the Netherlands
| | - Amrei Holz
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany; Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Mate D Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Martin K Schwarz
- Functional Neuroconnectomics Group, Department of Experimental Epileptology and Cognition Research, Life and Brain Centre, University of Bonn, Medical School, 53105, Bonn, Germany
| | - Claus Normann
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Knut Biber
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany; Department Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, 9713, AV Groningen, the Netherlands
| | - Dietrich van Calker
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| |
Collapse
|
10
|
Calker D, Biber K, Domschke K, Serchov T. The role of adenosine receptors in mood and anxiety disorders. J Neurochem 2019; 151:11-27. [DOI: 10.1111/jnc.14841] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Dietrich Calker
- Department for Psychiatry and Psychotherapy, Medical Center ‐ University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Knut Biber
- Section Medical Physiology, Department of Neuroscience University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Katharina Domschke
- Department for Psychiatry and Psychotherapy, Medical Center ‐ University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Tsvetan Serchov
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, Medical Center ‐ University Freiburg University of Freiburg Freiburg Germany
| |
Collapse
|
11
|
Zhu G, Dai B, Chen Z, He L, Guo J, Dan Y, Liang S, Li G. Effects of chronic lead exposure on the sympathoexcitatory response associated with the P2X7 receptor in rat superior cervical ganglia. Auton Neurosci 2019; 219:33-41. [DOI: 10.1016/j.autneu.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/01/2019] [Accepted: 03/20/2019] [Indexed: 12/23/2022]
|
12
|
Wang XL, Yuan K, Zhang W, Li SX, Gao GF, Lu L. Regulation of Circadian Genes by the MAPK Pathway: Implications for Rapid Antidepressant Action. Neurosci Bull 2019; 36:66-76. [PMID: 30859414 DOI: 10.1007/s12264-019-00358-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests that the circadian rhythm plays a critical role in mood regulation, and circadian disturbances are often found in patients with major depressive disorder (MDD). The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway is involved in mediating entrainment of the circadian system. Furthermore, the MAPK/ERK signaling pathway has been shown to be involved in the pathogenesis of MDD and the rapid onset of action of antidepressant therapies, both pharmaceutical and non-pharmaceutical. This review provides an overview of the involvement of the MAPK/ERK pathway in modulating the circadian system in the rapid action of antidepressant therapies. This pathway holds much promise for the development of novel, rapid-onset-of-action therapeutics for MDD.
Collapse
Affiliation(s)
- Xin-Ling Wang
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Kai Yuan
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100191, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, 100191, China.
| | - George Fu Gao
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China. .,Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Lin Lu
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China. .,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100191, China. .,National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, 100191, China. .,Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, 100191, China.
| |
Collapse
|
13
|
Artigas F, Celada P, Bortolozzi A. Can we increase the speed and efficacy of antidepressant treatments? Part II. Glutamatergic and RNA interference strategies. Eur Neuropsychopharmacol 2018. [PMID: 29525411 DOI: 10.1016/j.euroneuro.2018.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the second part we focus on two treatment strategies that may overcome the main limitations of current antidepressant drugs. First, we review the experimental and clinical evidence supporting the use of glutamatergic drugs as fast-acting antidepressants. Secondly, we review the involvement of microRNAs (miRNAs) in the pathophysiology of major depressive disorder (MDD) and the use of small RNAs (e.g.., small interfering RNAs or siRNAs) to knockdown genes in monoaminergic and non-monoaminergic neurons and induce antidepressant-like responses in experimental animals. The development of glutamatergic agents is a promising venue for antidepressant drug development, given the antidepressant properties of the non-competitive NMDA receptor antagonist ketamine. Its unique properties appear to result from the activation of AMPA receptors by a metabolite [(2S,6S;2R,6R)-hydroxynorketamine (HNK)] and mTOR signaling. These effects increase synaptogenesis in prefrontal cortical pyramidal neurons and enhance serotonergic neurotransmission via descending inputs to the raphe nuclei. This view is supported by the cancellation of ketamine's antidepressant-like effects by inhibition of serotonin synthesis. We also review existing evidence supporting the involvement of miRNAs in MDD and the preclinical use of RNA interference (RNAi) strategies to target genes involved in antidepressant response. Many miRNAs have been associated to MDD, some of which e.g., miR-135 targets genes involved in antidepressant actions. Likewise, SSRI-conjugated siRNA evokes faster and/or more effective antidepressant-like responses. Intranasal application of sertraline-conjugated siRNAs directed to 5-HT1A receptors and SERT evoked much faster changes of pre- and postsynaptic antidepressant markers than those produced by fluoxetine.
Collapse
Affiliation(s)
- F Artigas
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; CIBERSAM (Centro de Investigació Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain.
| | - P Celada
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; CIBERSAM (Centro de Investigació Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain
| | - A Bortolozzi
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; CIBERSAM (Centro de Investigació Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain
| |
Collapse
|
14
|
Nazario LR, da Silva RS, Bonan CD. Targeting Adenosine Signaling in Parkinson's Disease: From Pharmacological to Non-pharmacological Approaches. Front Neurosci 2017; 11:658. [PMID: 29217998 PMCID: PMC5703841 DOI: 10.3389/fnins.2017.00658] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative disease displaying negative impacts on both the health and social ability of patients and considerable economical costs. The classical anti-parkinsonian drugs based in dopaminergic replacement are the standard treatment, but several motor side effects emerge during long-term use. This mini-review presents the rationale to several efforts from pre-clinical and clinical studies using adenosine receptor antagonists as a non-dopaminergic therapy. As several studies have indicated that the monotherapy with adenosine receptor antagonists reaches limited efficacy, the usage as a co-adjuvant appeared to be a promising strategy. The formulation of multi-targeted drugs, using adenosine receptor antagonists and other neurotransmitter systems than the dopaminergic one as targets, have been receiving attention since Parkinson's disease presents a complex biological impact. While pharmacological approaches to cure or ameliorate the conditions of PD are the leading strategy in this area, emerging positive aspects have arisen from non-pharmacological approaches and adenosine function inhibition appears to improve both strategies.
Collapse
Affiliation(s)
- Luiza R Nazario
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rosane S da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla D Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
15
|
Increased Signaling via Adenosine A1 Receptors, Sleep Deprivation, Imipramine, and Ketamine Inhibit Depressive-like Behavior via Induction of Homer1a. Neuron 2015; 87:549-62. [PMID: 26247862 DOI: 10.1016/j.neuron.2015.07.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 05/26/2015] [Accepted: 07/16/2015] [Indexed: 12/25/2022]
Abstract
Major depressive disorder is among the most commonly diagnosed disabling mental diseases. Several non-pharmacological treatments of depression upregulate adenosine concentration and/or adenosine A1 receptors (A1R) in the brain. To test whether enhanced A1R signaling mediates antidepressant effects, we generated a transgenic mouse with enhanced doxycycline-regulated A1R expression, specifically in forebrain neurons. Upregulating A1R led to pronounced acute and chronic resilience toward depressive-like behavior in various tests. Conversely, A1R knockout mice displayed an increased depressive-like behavior and were resistant to the antidepressant effects of sleep deprivation (SD). Various antidepressant treatments increase homer1a expression in medial prefrontal cortex (mPFC). Specific siRNA knockdown of homer1a in mPFC enhanced depressive-like behavior and prevented the antidepressant effects of A1R upregulation, SD, imipramine, and ketamine treatment. In contrast, viral overexpression of homer1a in the mPFC had antidepressant effects. Thus, increased expression of homer1a is a final common pathway mediating the antidepressant effects of different antidepressant treatments.
Collapse
|
16
|
Ortiz R, Ulrich H, Zarate CA, Machado-Vieira R. Purinergic system dysfunction in mood disorders: a key target for developing improved therapeutics. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:117-31. [PMID: 25445063 PMCID: PMC4262688 DOI: 10.1016/j.pnpbp.2014.10.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/20/2014] [Accepted: 10/28/2014] [Indexed: 02/09/2023]
Abstract
Uric acid and purines (such as adenosine) regulate mood, sleep, activity, appetite, cognition, memory, convulsive threshold, social interaction, drive, and impulsivity. A link between purinergic dysfunction and mood disorders was first proposed a century ago. Interestingly, a recent nationwide population-based study showed elevated risk of gout in subjects with bipolar disorder (BD), and a recent meta-analysis and systematic review of placebo-controlled trials of adjuvant purinergic modulators confirmed their benefits in bipolar mania. Uric acid may modulate energy and activity levels, with higher levels associated with higher energy and BD spectrum. Several recent genetic studies suggest that the purinergic system - particularly the modulation of P1 and P2 receptor subtypes - plays a role in mood disorders, lending credence to this model. Nucleotide concentrations can be measured using brain spectroscopy, and ligands for in vivo positron emission tomography (PET) imaging of adenosine (P1) receptors have been developed, thus allowing potential target engagement studies. This review discusses the key role of the purinergic system in the pathophysiology of mood disorders. Focusing on this promising therapeutic target may lead to the development of therapies with antidepressant, mood stabilization, and cognitive effects.
Collapse
Affiliation(s)
- Robin Ortiz
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Division of Intramural Research Programs, National Institutes of Health, Bethesda, MD, USA.
| | - Henning Ulrich
- Departament of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil.
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Division of Intramural Research Programs, National Institutes of Health, Bethesda, MD, USA.
| | - Rodrigo Machado-Vieira
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Division of Intramural Research Programs, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neuroscience, LIM27, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
17
|
Hoirisch-Clapauch S, Mezzasalma MAU, Nardi AE. Pivotal role of tissue plasminogen activator in the mechanism of action of electroconvulsive therapy. J Psychopharmacol 2014; 28:99-105. [PMID: 24113086 DOI: 10.1177/0269881113507639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electroconvulsive therapy is an important treatment option for major depressive disorders, acute mania, mood disorders with psychotic features, and catatonia. Several hypotheses have been proposed as electroconvulsive therapy's mechanism of action. Our hypothesis involves many converging pathways facilitated by increased synthesis and release of tissue-plasminogen activator. Human and animal experiments have shown that tissue-plasminogen activator participates in many mechanisms of action of electroconvulsive therapy or its animal variant, electroconvulsive stimulus, including improved N-methyl-D-aspartate receptor-mediated signaling, activation of both brain-derived neurotrophic factor and vascular endothelial growth factor, increased bioavailability of zinc, purinergic release, and increased mobility of dendritic spines. As a result, tissue-plasminogen activator helps promote neurogenesis in limbic structures, modulates synaptic transmission and plasticity, improves cognitive function, and mediates antidepressant effects. Notably, electroconvulsive therapy seems to influence tissue-plasminogen activator metabolism. For example, electroconvulsive stimulus increases the expression of glutamate decarboxylase 65 isoform in γ-aminobutyric acid-releasing neurons, which enhances the release of tissue-plasminogen activator, and the expression of p11, a protein involved in plasminogen and tissue-plasminogen activator assembling. This paper reviews how electroconvulsive therapy correlates with tissue-plasminogen activator. We suggest that interventions aiming at increasing tissue-plasminogen activator levels or its bioavailability - such as daily aerobic exercises together with a carbohydrate-restricted diet, or normalization of homocysteine levels - be evaluated in controlled studies assessing response and remission duration in patients who undergo electroconvulsive therapy.
Collapse
Affiliation(s)
- Silvia Hoirisch-Clapauch
- 1Department of Hematology, Hospital Federal dos Servidores do Estado, Ministry of Health, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
18
|
Electroconvulsive seizure induces thrombospondin-1 in the adult rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:236-44. [PMID: 24121060 DOI: 10.1016/j.pnpbp.2013.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 01/29/2023]
Abstract
Synaptic dysfunction has recently gained attention for its involvement in mood disorders. Electroconvulsive therapy (ECT) possibly plays a role in synaptic repair. However, the underlying mechanisms remain uncertain. Thrombospondin-1 (TSP-1), a member of the TSP family, is reported to be secreted by astrocytes and to regulate synaptogenesis. We investigated the effects of electroconvulsive seizure (ECS) on the expression of TSPs in the adult rat hippocampus. Single and repeated ECS significantly increased TSP-1 mRNA expression after 2h and returned to sham levels at 24h. Conversely, the TSP-2 and -4 mRNA levels did not change. Only repeated ECS induced TSP-1 proteins. ECS also induced glial fibrillary acidic protein (GFAP) expression. The GFAP expression occurred later than the TSP-1 mRNA expression following single ECS; however, it occurred earlier and was more persistent following repeated ECS. ECS had no effect on the α2δ-1 or neuroligin-1 expressions, both of which are TSP-1 receptors. Furthermore, chronic treatment with antidepressants did not induce the expression of TSP-1 or GFAP. These findings suggest that repeated ECS, but not chronic treatment with antidepressants, induces TSP-1 expression partially via the activation of astrocytes. Therefore, TSP-1 is possibly involved in the synaptogenic effects of ECS.
Collapse
|
19
|
Burnstock G, Krügel U, Abbracchio MP, Illes P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 2011; 95:229-74. [PMID: 21907261 DOI: 10.1016/j.pneurobio.2011.08.006] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023]
Abstract
Purinergic neurotransmission, involving release of ATP as an efferent neurotransmitter was first proposed in 1972. Later, ATP was recognised as a cotransmitter in peripheral nerves and more recently as a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the CNS. Both ATP, together with some of its enzymatic breakdown products (ADP and adenosine) and uracil nucleotides are now recognised to act via P2X ion channels and P1 and P2Y G protein-coupled receptors, which are widely expressed in the brain. They mediate both fast signalling in neurotransmission and neuromodulation and long-term (trophic) signalling in cell proliferation, differentiation and death. Purinergic signalling is prominent in neurone-glial cell interactions. In this review we discuss first the evidence implicating purinergic signalling in normal behaviour, including learning and memory, sleep and arousal, locomotor activity and exploration, feeding behaviour and mood and motivation. Then we turn to the involvement of P1 and P2 receptors in pathological brain function; firstly in trauma, ischemia and stroke, then in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's, as well as multiple sclerosis and amyotrophic lateral sclerosis. Finally, the role of purinergic signalling in neuropsychiatric diseases (including schizophrenia), epilepsy, migraine, cognitive impairment and neuropathic pain will be considered.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | |
Collapse
|