1
|
Abdullah EM, Khan MS, Aziz IM, Alokail MS, Karthikeyan S, Rupavarshini M, Bhat SA, Ataya FS. Expression, characterization and cytotoxicity of recombinant l-asparaginase II from Salmonella paratyphi cloned in Escherichia coli. Int J Biol Macromol 2024; 279:135458. [PMID: 39251007 DOI: 10.1016/j.ijbiomac.2024.135458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
L-asparaginase is a remarkable antineoplastic enzyme used in medicine for the treatment of acute lymphoblastic leukemia (ALL) as well as in food industries. In this work, the L-asparaginase-II gene from Salmonella paratyphi was codon-optimized, cloned, and expressed in E. coli as a His-tag fusion protein. Then, using a two-step chromatographic procedure it was purified to homogeneity as confirmed by SDS-PAGE, which also showed its monomeric molecular weight to be 37 kDa. This recombinant L-asparaginase II from Salmonella paratyphi (recSalA) was optimally active at pH 7.0 and 40 °C temperature. It was highly specific for L-asparagine as a substrate, while its glutaminase activity was low. The specific activity was found to be 197 U/mg and the kinetics elements Km, Vmax, and kcat were determined to be 21 mM, 28 μM/min, and 39.6 S-1, respectively. Thermal stability was assessed using a spectrofluorometer and showed Tm value of 45 °C. The in-vitro effects of recombinant asparaginase on three different human cancerous cell lines (MCF7, A549 and Hep-2) by MTT assay showed remarkable anti-proliferative activity. Moreover, recSalA exhibited significant morphological changes in cancer cells and IC50 values ranged from 28 to 45.5 μg/ml for tested cell lines. To investigate the binding mechanism of SalA, both substrates L-asparagine and l-glutamine were docked with the protein and the binding energy was calculated to be -4.2 kcal mol-1 and - 4.4 kcal mol-1, respectively. In summary, recSalA has significant efficacy as an anticancer agent with potential implications in oncology while its in-vivo validation needs further investigation.
Collapse
Affiliation(s)
- Ejlal Mohamed Abdullah
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Riyadh, Saudi Arabia
| | - Ibrahim M Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Majed S Alokail
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Riyadh, Saudi Arabia
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology University, Chennai Campus, Chennai 600127, India
| | - Manoharan Rupavarshini
- Division of Physics, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur - Kelambakkam Road, Chennai, Tamil Nadu 600127, India
| | | | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Ruiz-Lara G, Costa-Silva TA, Muso-Cachumba JJ, Cevallos Espinel J, Fontes MG, Garcia-Maya M, Rahman KM, Rangel-Yagui CDO, Monteiro G. Nonclinical Evaluation of Single-Mutant E. coli Asparaginases Obtained by Double-Mutant Deconvolution: Improving Toxicological, Immune and Inflammatory Responses. Int J Mol Sci 2024; 25:6008. [PMID: 38892196 PMCID: PMC11172649 DOI: 10.3390/ijms25116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Acute lymphoblastic leukaemia is currently treated with bacterial L-asparaginase; however, its side effects raise the need for the development of improved and efficient novel enzymes. Previously, we obtained low anti-asparaginase antibody production and high serum enzyme half-life in mice treated with the P40S/S206C mutant; however, its specific activity was significantly reduced. Thus, our aim was to test single mutants, S206C and P40S, through in vitro and in vivo assays. Our results showed that the drop in specific activity was caused by P40S substitution. In addition, our single mutants were highly stable in biological environment simulation, unlike the double-mutant P40S/S206C. The in vitro cell viability assay demonstrated that mutant enzymes have a higher cytotoxic effect than WT on T-cell-derived ALL and on some solid cancer cell lines. The in vivo assays were performed in mice to identify toxicological effects, to evoke immunological responses and to study the enzymes' pharmacokinetics. From these tests, none of the enzymes was toxic; however, S206C elicited lower physiological changes and immune/allergenic responses. In relation to the pharmacokinetic profile, S206C exhibited twofold higher activity than WT and P40S two hours after injection. In conclusion, we present bioengineered E. coli asparaginases with high specific enzyme activity and fewer side effects.
Collapse
Affiliation(s)
- Grace Ruiz-Lara
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| | - Tales A. Costa-Silva
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil;
| | - Jorge Javier Muso-Cachumba
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| | | | - Marina Gabriel Fontes
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| | - Mitla Garcia-Maya
- Randall Division of Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK;
| | | | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| | - Gisele Monteiro
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (G.R.-L.); (J.J.M.-C.); (M.G.F.); (C.d.O.R.-Y.)
| |
Collapse
|
3
|
Barman P, Joshi S, Sharma S, Preet S, Sharma S, Saini A. Strategic Approaches to Improvise Peptide Drugs as Next Generation Therapeutics. Int J Pept Res Ther 2023; 29:61. [PMID: 37251528 PMCID: PMC10206374 DOI: 10.1007/s10989-023-10524-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
In recent years, the occurrence of a wide variety of drug-resistant diseases has led to an increase in interest in alternate therapies. Peptide-based drugs as an alternate therapy hold researchers' attention in various therapeutic fields such as neurology, dermatology, oncology, metabolic diseases, etc. Previously, they had been overlooked by pharmaceutical companies due to certain limitations such as proteolytic degradation, poor membrane permeability, low oral bioavailability, shorter half-life, and poor target specificity. Over the last two decades, these limitations have been countered by introducing various modification strategies such as backbone and side-chain modifications, amino acid substitution, etc. which improve their functionality. This has led to a substantial interest of researchers and pharmaceutical companies, moving the next generation of these therapeutics from fundamental research to the market. Various chemical and computational approaches are aiding the production of more stable and long-lasting peptides guiding the formulation of novel and advanced therapeutic agents. However, there is not a single article that talks about various peptide design approaches i.e., in-silico and in-vitro along with their applications and strategies to improve their efficacy. In this review, we try to bring different aspects of peptide-based therapeutics under one article with a clear focus to cover the missing links in the literature. This review draws emphasis on various in-silico approaches and modification-based peptide design strategies. It also highlights the recent progress made in peptide delivery methods important for their enhanced clinical efficacy. The article would provide a bird's-eye view to researchers aiming to develop peptides with therapeutic applications. Graphical Abstract
Collapse
Affiliation(s)
- Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Shubhi Joshi
- Energy Research Centre, Panjab University, Sector 14, Chandigarh, 160014 India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Simran Preet
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Shweta Sharma
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| |
Collapse
|
4
|
Blachier J, Cleret A, Guerin N, Gil C, Fanjat JM, Tavernier F, Vidault L, Gallix F, Rama N, Rossignol R, Piedrahita D, Andrivon A, Châlons-Cottavoz M, Aguera K, Gay F, Horand F, Laperrousaz B. L-asparaginase anti-tumor activity in pancreatic cancer is dependent on its glutaminase activity and resistance is mediated by glutamine synthetase. Exp Cell Res 2023; 426:113568. [PMID: 36967104 DOI: 10.1016/j.yexcr.2023.113568] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
l-Asparaginase is a cornerstone of acute lymphoblastic leukemia (ALL) therapy since lymphoblasts lack asparagine synthetase (ASNS) and rely on extracellular asparagine availability for survival. Resistance mechanisms are associated with increased ASNS expression in ALL. However, the association between ASNS and l-Asparaginase efficacy in solid tumors remains unclear, thus limiting clinical development. Interestingly, l-Asparaginase also has a glutaminase co-activity that is crucial in pancreatic cancer where KRAS mutations activate glutamine metabolism. By developing l-Asparaginase-resistant pancreatic cancer cells and using OMICS approaches, we identified glutamine synthetase (GS) as a marker of resistance to l-Asparaginase. GS is the only enzyme able to synthesize glutamine, and its expression also correlates with l-Asparaginase efficacy in 27 human cell lines from 11 cancer indications. Finally, we further demonstrated that GS inhibition prevents cancer cell adaptation to l-Asparaginase-induced glutamine starvation. These findings could pave the way to the development of promising drug combinations to overcome l-Asparaginase resistance.
Collapse
|
5
|
Puris E, Saveleva L, de Sousa Maciel I, Kanninen KM, Auriola S, Fricker G. Protein Expression of Amino Acid Transporters Is Altered in Isolated Cerebral Microvessels of 5xFAD Mouse Model of Alzheimer's Disease. Mol Neurobiol 2023; 60:732-748. [PMID: 36367657 PMCID: PMC9849299 DOI: 10.1007/s12035-022-03111-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Membrane transporters such as ATP-binding cassette (ABC) and solute carrier (SLC) transporters expressed at the neurovascular unit (NVU) play an important role in drug delivery to the brain and have been demonstrated to be involved in Alzheimer's disease (AD) pathogenesis. However, our knowledge of quantitative changes in transporter absolute protein expression and functionality in vivo in NVU in AD patients and animal models is limited. The study aim was to investigate alterations in protein expression of ABC and SLC transporters in the isolated brain microvessels and brain prefrontal cortices of a widely used model of familial AD, 5xFAD mice (8 months old), using a sensitive liquid chromatography tandem mass spectrometry-based quantitative targeted absolute proteomic approach. Moreover, we examined alterations in brain prefrontal cortical and plasmatic levels of transporter substrates in 5xFAD mice compared to age-matched wild-type (WT) controls. ASCT1 (encoded by Slc1a4) protein expression in the isolated brain microvessels and brain prefrontal cortices of 5xFAD mice was twice higher compared to WT controls (p = 0.01). Brain cortical levels of ASCT1 substrate, serine, were increased in 5xFAD mice compared to WT animals. LAT1 (encoded by Slc7a5) and 4F2hc (encoded by Slc3a2) protein expressions were significantly altered in the isolated brain microvessels of 5xFAD mice compared to WT controls (p = 0.008 and p = 0.05, respectively). Overall, the study provides important information, which is crucial for the optimal use of the 5xFAD mouse model in AD drug development and for investigating novel drug delivery approaches. In addition, the findings of the study shed light on the novel potential mechanisms underlying AD pathogenesis.
Collapse
Affiliation(s)
- Elena Puris
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Liudmila Saveleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Izaque de Sousa Maciel
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Lin Y, Zhou X, Ni Y, Zhao X, Liang X. Metabolic reprogramming of the tumor immune microenvironment in ovarian cancer: A novel orientation for immunotherapy. Front Immunol 2022; 13:1030831. [PMID: 36311734 PMCID: PMC9613923 DOI: 10.3389/fimmu.2022.1030831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic tumor, with the highest mortality rate. Numerous studies have been conducted on the treatment of ovarian cancer in the hopes of improving therapeutic outcomes. Immune cells have been revealed to play a dual function in the development of ovarian cancer, acting as both tumor promoters and tumor suppressors. Increasingly, the tumor immune microenvironment (TIME) has been proposed and confirmed to play a unique role in tumor development and treatment by altering immunosuppressive and cytotoxic responses in the vicinity of tumor cells through metabolic reprogramming. Furthermore, studies of immunometabolism have provided new insights into the understanding of the TIME. Targeting or activating metabolic processes of the TIME has the potential to be an antitumor therapy modality. In this review, we summarize the composition of the TIME of ovarian cancer and its metabolic reprogramming, its relationship with drug resistance in ovarian cancer, and recent research advances in immunotherapy.
Collapse
|
7
|
Safrhansova L, Hlozkova K, Starkova J. Targeting amino acid metabolism in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:37-79. [PMID: 36283767 DOI: 10.1016/bs.ircmb.2022.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolic rewiring is a characteristic hallmark of cancer cells. This phenomenon sustains uncontrolled proliferation and resistance to apoptosis by increasing nutrients and energy supply. However, reprogramming comes together with vulnerabilities that can be used against tumor and can be applied in targeted therapy. In the last years, the genetic background of tumors has been identified thoroughly and new therapies targeting those mutations tested. Nevertheless, we propose that targeting the phenotype of cancer cells could be another way of treatment aiming to avoid drug resistance and non-responsiveness of cancer patients. Amino acid metabolism is part of the altered processes in cancer cells. Amino acids are building blocks and also sensors of signaling pathways regulating main biological processes. In this comprehensive review, we described four amino acids (asparagine, arginine, methionine, and cysteine) which have been actively investigated as potential targets for anti-tumor therapy. Asparagine depletion is successfully used for decades in the treatment of acute lymphoblastic leukemia and there is a strong implication to apply it to other types of tumors. Arginine auxotrophic tumors are great candidates for arginine-starvation therapy. Higher requirement for essential amino acids such as methionine and cysteine point out promising targetable weaknesses of cancer cells.
Collapse
Affiliation(s)
- Lucie Safrhansova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Hlozkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Julia Starkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
8
|
Reustle A, Menig LS, Leuthold P, Hofmann U, Stühler V, Schmees C, Becker M, Haag M, Klumpp V, Winter S, Büttner FA, Rausch S, Hennenlotter J, Fend F, Scharpf M, Stenzl A, Bedke J, Schwab M, Schaeffeler E. Nicotinamide-N-methyltransferase is a promising metabolic drug target for primary and metastatic clear cell renal cell carcinoma. Clin Transl Med 2022; 12:e883. [PMID: 35678045 PMCID: PMC9178377 DOI: 10.1002/ctm2.883] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022] Open
Abstract
Background The metabolic enzyme nicotinamide‐N‐methyltransferase (NNMT) is highly expressed in various cancer entities, suggesting tumour‐promoting functions. We systematically investigated NNMT expression and its metabolic interactions in clear cell renal cell carcinoma (ccRCC), a prominent RCC subtype with metabolic alterations, to elucidate its role as a drug target. Methods NNMT expression was assessed in primary ccRCC (n = 134), non‐tumour tissue and ccRCC‐derived metastases (n = 145) by microarray analysis and/or immunohistochemistry. Findings were validated in The Cancer Genome Atlas (kidney renal clear cell carcinoma [KIRC], n = 452) and by single‐cell analysis. Expression was correlated with clinicopathological data and survival. Metabolic alterations in NNMT‐depleted cells were assessed by nontargeted/targeted metabolomics and extracellular flux analysis. The NNMT inhibitor (NNMTi) alone and in combination with the inhibitor 2‐deoxy‐D‐glucose for glycolysis and BPTES (bis‐2‐(5‐phenylacetamido‐1,3,4‐thiadiazol‐2‐yl)ethyl‐sulfide) for glutamine metabolism was investigated in RCC cell lines (786‐O, A498) and in two 2D ccRCC‐derived primary cultures and three 3D ccRCC air–liquid interface models. Results NNMT protein was overexpressed in primary ccRCC (p = 1.32 × 10–16) and ccRCC‐derived metastases (p = 3.92 × 10–20), irrespective of metastatic location, versus non‐tumour tissue. Single‐cell data showed predominant NNMT expression in ccRCC and not in the tumour microenvironment. High NNMT expression in primary ccRCC correlated with worse survival in independent cohorts (primary RCC—hazard ratio [HR] = 4.3, 95% confidence interval [CI]: 1.5–12.4; KIRC—HR = 3.3, 95% CI: 2.0–5.4). NNMT depletion leads to intracellular glutamine accumulation, with negative effects on mitochondrial function and cell survival, while not affecting glycolysis or glutathione metabolism. At the gene level, NNMT‐depleted cells upregulate glycolysis, oxidative phosphorylation and apoptosis pathways. NNMTi alone or in combination with 2‐deoxy‐D‐glucose and BPTES resulted in inhibition of cell viability in ccRCC cell lines and primary tumour and metastasis‐derived models. In two out of three patient‐derived ccRCC air–liquid interface models, NNMTi treatment induced cytotoxicity. Conclusions Since efficient glutamine utilisation, which is essential for ccRCC tumours, depends on NNMT, small‐molecule NNMT inhibitors provide a novel therapeutic strategy for ccRCC and act as sensitizers for combination therapies.
Collapse
Affiliation(s)
- Anna Reustle
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Lena-Sophie Menig
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Patrick Leuthold
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Viktoria Stühler
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany
| | - Christian Schmees
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Michael Becker
- Experimental Pharmacology and Oncology GmbH, Berlin-Buch, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Verena Klumpp
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Florian A Büttner
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Steffen Rausch
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Marcus Scharpf
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany
| | - Jens Bedke
- Department of Urology, University Hospital Tuebingen, Tuebingen, Germany.,German Cancer Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany.,German Cancer Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
9
|
Van Trimpont M, Peeters E, De Visser Y, Schalk AM, Mondelaers V, De Moerloose B, Lavie A, Lammens T, Goossens S, Van Vlierberghe P. Novel Insights on the Use of L-Asparaginase as an Efficient and Safe Anti-Cancer Therapy. Cancers (Basel) 2022; 14:cancers14040902. [PMID: 35205650 PMCID: PMC8870365 DOI: 10.3390/cancers14040902] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary L-asparaginase (L-ASNase) therapy is key for achieving the very high cure rate of pediatric acute lymphoblastic leukemia (ALL), yet its use is mostly confined to this indication. One main reason preventing the expansion of today’s FDA-approved L-ASNases to solid cancers is their high toxicity and side effects, which become especially challenging in adult patients. The design of optimized L-ASNase molecules provides opportunities to overcome these unwanted toxicities. An additional challenge to broader application of L-ASNases is how cells can counter the pharmacological effect of this drug and the identification of L-ASNases resistance mechanisms. In this review, we discuss recent insights into L-ASNase adverse effects, resistance mechanisms, and how novel L-ASNase variants and drug combinations can expand its clinical applicability, with a focus on both hematological and solid tumors. Abstract L-Asparaginase (L-ASNase) is an enzyme that hydrolyses the amino acid asparagine into aspartic acid and ammonia. Systemic administration of bacterial L-ASNase is successfully used to lower the bioavailability of this non-essential amino acid and to eradicate rapidly proliferating cancer cells with a high demand for exogenous asparagine. Currently, it is a cornerstone drug in the treatment of the most common pediatric cancer, acute lymphoblastic leukemia (ALL). Since these lymphoblasts lack the expression of asparagine synthetase (ASNS), these cells depend on the uptake of extracellular asparagine for survival. Interestingly, recent reports have illustrated that L-ASNase may also have clinical potential for the treatment of other aggressive subtypes of hematological or solid cancers. However, immunogenic and other severe adverse side effects limit optimal clinical use and often lead to treatment discontinuation. The design of optimized and novel L-ASNase formulations provides opportunities to overcome these limitations. In addition, identification of multiple L-ASNase resistance mechanisms, including ASNS promoter reactivation and desensitization, has fueled research into promising novel drug combinations to overcome chemoresistance. In this review, we discuss recent insights into L-ASNase adverse effects, resistance both in hematological and solid tumors, and how novel L-ASNase variants and drug combinations can expand its clinical applicability.
Collapse
Affiliation(s)
- Maaike Van Trimpont
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Evelien Peeters
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Yanti De Visser
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Amanda M. Schalk
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA; (A.M.S.); (A.L.)
| | - Veerle Mondelaers
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Barbara De Moerloose
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA; (A.M.S.); (A.L.)
- The Jesse Brown VA Medical Center, Chicago, IL 60607, USA
| | - Tim Lammens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
10
|
Dogra R, Mandal UK. Recent Applications of Derivatization Techniques for Pharmaceutical and
Bioanalytical Analysis through High-performance Liquid Chromatography. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017666211108092115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Derivatization of analytes is a quite convenient practice from an analytical perspective. Its vast prevalence is accounted by the availability of distinct reagents, primarily pragmatic for obtaining desired modifications in an analyte structure. Another reason for its handiness is typically to overcome limitations such as lack of sensitive methodology or instrumentation.The past decades have witnessed various new derivatization techniques including in-situ, enzymatic, ultrasound-assisted, microwave-assisted, and photochemical derivatization which have gain popularity recently.
Methods:
The online literature available on the utilization of derivatization as prominent analytical tools in recent years with typical advancements is reviewed. The illustrations of the analytical condition together with the structures of different derivatizing reagents (DRs) are provided to acknowledge the vast capability of derivatization to resolve analytical problems.
Results:
The derivatization techniques have enabled analytical chemists throughout the globe to develop an enhanced sensitivity method with the simplest of the instrument like High-Performance Liquid Chromatography (HPLC). The HPLC, compared to more sensitive Liquid chromatography coupled to tandem mass spectrometer, is readily available and can be readily utilized for routine analysis in fields of pharmaceuticals, bioanalysis, food safety, and environmental contamination. A troublesome aspect of these fields is the presence of a complex matrix with trace concentrations for analyses. Liquid chromatographic methods devoid of MS detectors do not have the desired sensitivity for this. A possible solution for overcoming this is to couple HPLC with derivatization to enable the possibility of detecting trace analytes with a less expensive instrument. Running cost, enhanced sensitivity, low time consumption, and overcoming the inherent problems of analyte are critical parameters for which HPLC is quite useful in high throughput analysis.
Conclusion:
The review critically highlights various kinds of derivatization applications in different fields of analytical chemistry. The information primarily focuses on pharmaceutical and bioanalytical applications in recent years. The various modes, types, and derivatizing reagents with brief mechanisms have been ascribed briefly Additionally, the importance of HPLC coupled to fluorescence and UV detection is presented as an overview through examples accompanied by their analytical conditions.
Collapse
Affiliation(s)
- Raghav Dogra
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Uttam Kumar Mandal
- Department of Pharmaceutical
Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Punjab, India
| |
Collapse
|
11
|
Nadeem MS, Khan JA, Al-Ghamdi MA, Khan MI, Zeyadi MA. Studies on the recombinant production and anticancer activity of thermostable L- asparaginase I from Pyrococcus abyssi. BRAZ J BIOL 2021; 82:e244735. [PMID: 34076169 DOI: 10.1590/1519-6984.244735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022] Open
Abstract
L-Asparaginase catalysing the breakdown of L-Asparagine to L-Aspartate and ammonia is an enzyme of therapeutic importance in the treatment of cancer, especially the lymphomas and leukaemia. The present study describes the recombinant production, properties and anticancer potential of enzyme from a hyperthermophilic archaeon Pyrococcus abyssi. There are two genes coding for asparaginase in the genome of this organism. A 918 bp gene encoding 305 amino acids was PCR amplified and cloned in BL21 (DE3) strain of E. coli using pET28a (+) plasmid. The production of recombinant enzyme was induced under 0.5mM IPTG, purified by selective heat denaturation and ion exchange chromatography. Purified enzyme was analyzed for kinetics, in silico structure and anticancer properties. The recombinant enzyme has shown a molecular weight of 33 kDa, specific activity of 1175 U/mg, KM value 2.05mM, optimum temperature and pH 80°C and 8 respectively. No detectable enzyme activity found when L-Glutamine was used as the substrate. In silico studies have shown that the enzyme exists as a homodimer having Arg11, Ala87, Thr110, His112, Gln142, Leu172, and Lys232 being the putative active site residues. The free energy change calculated by molecular docking studies of enzyme and substrate was found as ∆G - 4.5 kJ/mole indicating the affinity of enzyme with the substrate. IC50 values of 5U/mL to 7.5U/mL were determined for FB, caco2 cells and HepG2 cells. A calculated amount of enzyme (5U/mL) exhibited 78% to 55% growth inhibition of caco2 and HepG2 cells. In conclusion, the recombinant enzyme produced and characterized in the present study offers a good candidate for the treatment of cancer. The procedures adopted in the present study can be prolonged for in vivo studies.
Collapse
Affiliation(s)
- M S Nadeem
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - J A Khan
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - M A Al-Ghamdi
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - M I Khan
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - M A Zeyadi
- King Abdulaziz University, Faculty of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Bauer C, Quante M, Breunis WB, Regina C, Schneider M, Andrieux G, Gorka O, Groß O, Boerries M, Kammerer B, Hettmer S. Lack of Electron Acceptors Contributes to Redox Stress and Growth Arrest in Asparagine-Starved Sarcoma Cells. Cancers (Basel) 2021; 13:cancers13030412. [PMID: 33499165 PMCID: PMC7865502 DOI: 10.3390/cancers13030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
Amino acids are integral components of cancer metabolism. The non-essential amino acid asparagine supports the growth and survival of various cancer cell types. Here, different mass spectrometry approaches were employed to identify lower aspartate levels, higher aspartate/glutamine ratios and lower tricarboxylic acid (TCA) cycle metabolite levels in asparagine-deprived sarcoma cells. Reduced nicotinamide adenine dinucleotide (NAD+)/nicotinamide adenine dinucleotide hydride (NADH) ratios were consistent with redirection of TCA cycle flux and relative electron acceptor deficiency. Elevated lactate/pyruvate ratios may be due to compensatory NAD+ regeneration through increased pyruvate to lactate conversion by lactate dehydrogenase. Supplementation with exogenous pyruvate, which serves as an electron acceptor, restored aspartate levels, NAD+/NADH ratios, lactate/pyruvate ratios and cell growth in asparagine-deprived cells. Chemicals disrupting NAD+ regeneration in the electron transport chain further enhanced the anti-proliferative and pro-apoptotic effects of asparagine depletion. We speculate that reductive stress may be a major contributor to the growth arrest observed in asparagine-starved cells.
Collapse
Affiliation(s)
- Christoph Bauer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany; (C.B.); (M.Q.); (C.R.); (M.S.)
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Meret Quante
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany; (C.B.); (M.Q.); (C.R.); (M.S.)
| | - Willemijn B. Breunis
- Department of Oncology and Children’s Research Center, University Children’s Hospital, Steinwiessstrasse 75, 8032 Zürich, Switzerland;
| | - Carla Regina
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany; (C.B.); (M.Q.); (C.R.); (M.S.)
| | - Michaela Schneider
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany; (C.B.); (M.Q.); (C.R.); (M.S.)
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, 79104 Freiburg, Germany; (G.A.); (M.B.)
- German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, Germany; (O.G.); (O.G.)
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, Germany; (O.G.); (O.G.)
- Signaling Research Center BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, 79104 Freiburg, Germany; (G.A.); (M.B.)
- German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), Medical Center-University of Freiburg, Hugstetter Strasse 49, 79106 Freiburg, Germany
| | - Bernd Kammerer
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
- Signaling Research Center BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albertstraße 19A, 79104 Freiburg, Germany
- Correspondence: (B.K.); (S.H.); Tel.: +49-761-203-97137 (B.K.); +49-761-270-45140 (S.H.); Fax: +49-761-203-97177 (B.K.); +49-761-270-45180 (S.H.)
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany; (C.B.); (M.Q.); (C.R.); (M.S.)
- Comprehensive Cancer Centre Freiburg (CCCF), Medical Center-University of Freiburg, Hugstetter Strasse 49, 79106 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albertstraße 19A, 79104 Freiburg, Germany
- Correspondence: (B.K.); (S.H.); Tel.: +49-761-203-97137 (B.K.); +49-761-270-45140 (S.H.); Fax: +49-761-203-97177 (B.K.); +49-761-270-45180 (S.H.)
| |
Collapse
|
13
|
Du XF, Zhu BJ, Cai ZC, Wang C, Zhao MX. Polyamine-Modified Gold Nanoparticles Readily Adsorb on Cell Membranes for Bioimaging. ACS OMEGA 2019; 4:17850-17856. [PMID: 31681893 PMCID: PMC6822120 DOI: 10.1021/acsomega.9b02579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/09/2019] [Indexed: 05/07/2023]
Abstract
The surface modification of nanoparticles (NPs) can enhance cellular and intracellular targeting. A new type of polyamine-modified gold NPs (AuNPs) are designed and synthesized, which can be selectively absorbed onto the cell membrane. AuNPs with an average diameter of 4.0 nm were prepared and modified with polyamine (R-4C) through amidation. In order to detect the distribution of NPs within cells by fluorescence imaging, AuNP@MPA-R-4C was functionalized with fluorescein isothiocyanate (FITC). The fluorescence-labled NPs AuNP@MPA-R-4C-FITC demonstrated minimal cytotoxicity in several cell lines. Both confocal laser scanning microscopy and transmission electron microscopy demonstrated that AuNP@MPA-R-4C-FITC was distributed on the cell membrane. Compared with the free organic dye, the modified AuNPs showed significantly increased accumulation on the cell membrane after treatment for only 10 min. These results suggested that AuNP@MPA-R-4C-FITC can be used as a bioprobe targeting the cell membrane for various biological applications.
Collapse
|
14
|
What makes a good new therapeutic l-asparaginase? World J Microbiol Biotechnol 2019; 35:152. [DOI: 10.1007/s11274-019-2731-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
|
15
|
Saiki S, Sasazawa Y, Fujimaki M, Kamagata K, Kaga N, Taka H, Li Y, Souma S, Hatano T, Imamichi Y, Furuya N, Mori A, Oji Y, Ueno SI, Nojiri S, Miura Y, Ueno T, Funayama M, Aoki S, Hattori N. A metabolic profile of polyamines in parkinson disease: A promising biomarker. Ann Neurol 2019; 86:251-263. [PMID: 31155745 PMCID: PMC6772170 DOI: 10.1002/ana.25516] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
Abstract
Objective Aging is the highest risk factor for Parkinson disease (PD). Under physiological conditions, spermidine and spermine experimentally enhance longevity via autophagy induction. Accordingly, we evaluated the ability of each polyamine metabolite to act as an age‐related, diagnostic, and severity‐associated PD biomarker. Methods Comprehensive metabolome analysis of plasma was performed in Cohort A (controls, n = 45; PD, n = 145), followed by analysis of 7 polyamine metabolites in Cohort B (controls, n = 49; PD, n = 186; progressive supranuclear palsy, n = 19; Alzheimer disease, n = 23). Furthermore, 20 patients with PD who were successively examined within Cohort B were studied using diffusion tensor imaging (DTI). Association of each polyamine metabolite with disease severity was assessed according to Hoehn and Yahr stage (H&Y) and Unified Parkinson's Disease Rating Scale motor section (UPDRS‐III). Additionally, the autophagy induction ability of each polyamine metabolite was examined in vitro in various cell lines. Results In Cohort A, N8‐acetylspermidine and N‐acetylputrescine levels were significantly and mildly elevated in PD, respectively. In Cohort B, spermine levels and spermine/spermidine ratio were significantly reduced in PD, concomitant with hyperacetylation. Furthermore, N1,N8‐diacetylspermidine levels had the highest diagnostic value, and correlated with H&Y, UPDRS‐III, and axonal degeneration quantified by DTI. The spermine/spermidine ratio in controls declined with age, but was consistently suppressed in PD. Among polyamine metabolites, spermine was the strongest autophagy inducer, especially in SH‐SY5Y cells. No significant genetic variations in 5 genes encoding enzymes associated with spermine/spermidine metabolism were detected compared with controls. Interpretation Spermine synthesis and N1,N8‐diacetylspermidine may respectively be useful diagnostic and severity‐associated biomarkers for PD. ANN NEUROL 2019;86:251–263
Collapse
Affiliation(s)
- Shinji Saiki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yukiko Sasazawa
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Motoki Fujimaki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naoko Kaga
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hikari Taka
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Sanae Souma
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Imamichi
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norihiko Furuya
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Division for Development of Autophagy Modulating Drugs, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akio Mori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yutaka Oji
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shin-Ichi Ueno
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shuko Nojiri
- Clinical Research Center, Juntendo University, Tokyo, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Ueno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Manabu Funayama
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory of Genomic Medicine, Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Division for Development of Autophagy Modulating Drugs, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory of Genomic Medicine, Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
16
|
Piya S, Mu H, Bhattacharya S, Lorenzi PL, Davis RE, McQueen T, Ruvolo V, Baran N, Wang Z, Qian Y, Crews CM, Konopleva M, Ishizawa J, You MJ, Kantarjian H, Andreeff M, Borthakur G. BETP degradation simultaneously targets acute myelogenous leukemia stem cells and the microenvironment. J Clin Invest 2019; 129:1878-1894. [PMID: 30829648 DOI: 10.1172/jci120654] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Anti-leukemic effect of BET/BRD4 (BETP) protein inhibition has been largely attributed to transcriptional downregulation of cellular anabolic/anti-apoptotic processes but its effect on bone marrow microenvironment, a sanctuary favoring persistence of leukemia stem/progenitor cells, is unexplored. Sustained degradation of BETP with small-molecule BET proteolysis-targeting chimera (PROTAC), ARV-825, resulted in marked downregulation of surface CXCR4 and CD44, key proteins in leukemia-microenvironment interaction, in AML cells. Abrogation of surface CXCR4 expression impaired SDF-1α directed migration and was mediated through transcriptional down-regulation of PIM1 kinase that in turn phosphorylates CXCR4 and facilitates its surface localization. Down-regulation of CD44/CD44v8-10 impaired cystine uptake, lowered intracellular reduced glutathione and increased oxidative stress. More importantly, BETP degradation markedly decreased CD34+CD38-CD90-CD45RA+ leukemic stem cell population and alone or in combination with Cytarabine, prolonged survival in mouse model of human leukemia including AML-PDX. Gene expression profiling and single cell proteomics confirmed down regulation of the gene signatures associated with 'stemness' in AML and Wnt/β-catenin, Myc pathways. Hence, BETP degradation by ARV-825 simultaneously targets cell intrinsic signaling, stromal interactions and metabolism in AML.
Collapse
Affiliation(s)
- Sujan Piya
- Section of Molecular Hematology and Therapy.,Department of Leukemia
| | - Hong Mu
- Section of Molecular Hematology and Therapy.,Department of Leukemia
| | | | | | - R Eric Davis
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Teresa McQueen
- Section of Molecular Hematology and Therapy.,Department of Leukemia
| | - Vivian Ruvolo
- Section of Molecular Hematology and Therapy.,Department of Leukemia
| | - Natalia Baran
- Section of Molecular Hematology and Therapy.,Department of Leukemia
| | - Zhiqiang Wang
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yimin Qian
- Arvinas Inc., New Haven, Connecticut, USA
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | | | | | - M James You
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Michael Andreeff
- Section of Molecular Hematology and Therapy.,Department of Leukemia
| | | |
Collapse
|
17
|
Assessment of l-Asparaginase Pharmacodynamics in Mouse Models of Cancer. Metabolites 2019; 9:metabo9010010. [PMID: 30634463 PMCID: PMC6359345 DOI: 10.3390/metabo9010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/24/2018] [Accepted: 01/04/2019] [Indexed: 11/21/2022] Open
Abstract
l-asparaginase (ASNase) is a metabolism-targeted anti-neoplastic agent used to treat acute lymphoblastic leukemia (ALL). ASNase’s anticancer activity results from the enzymatic depletion of asparagine (Asn) and glutamine (Gln), which are converted to aspartic acid (Asp) and glutamic acid (Glu), respectively, in the blood. Unfortunately, accurate assessment of the in vivo pharmacodynamics (PD) of ASNase is challenging because of the following reasons: (i) ASNase is resilient to deactivation; (ii) ASNase catalytic efficiency is very high; and (iii) the PD markers Asn and Gln are depleted ex vivo in blood samples containing ASNase. To address those issues and facilitate longitudinal studies in individual mice for ASNase PD studies, we present here a new LC-MS/MS bioanalytical method that incorporates rapid quenching of ASNase for measurement of Asn, Asp, Gln, and Glu in just 10 µL of whole blood, with limits of detection (s:n ≥ 10:1) estimated to be 2.3, 3.5, 0.8, and 0.5 µM, respectively. We tested the suitability of the method in a 5-day, longitudinal PD study in mice and found the method to be simple to perform with sufficient accuracy and precision for whole blood measurements. Overall, the method increases the density of data that can be acquired from a single animal and will facilitate optimization of novel ASNase treatment regimens and/or the development of new ASNase variants with desired kinetic properties.
Collapse
|
18
|
Abstract
Recently, metabolomics-the study of metabolite profiles within biological samples-has found a wide range of applications. This chapter describes the different techniques available for metabolomic analysis, the various samples that can be utilised for analysis and applications of both global and targeted metabolomic analysis to biomarker discovery in medicine.
Collapse
|
19
|
Zhang M, Zhang Y, Ren S, Zhang Z, Wang Y, Song R. Optimization of a Precolumn OPA Derivatization HPLC Assay for Monitoring of l-Asparagine Depletion in Serum during l-Asparaginase Therapy. J Chromatogr Sci 2018; 56:794-801. [PMID: 29878070 DOI: 10.1093/chromsci/bmy053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 05/10/2018] [Indexed: 12/31/2022]
Abstract
A method for monitoring l-asparagine (ASN) depletion in patients' serum using reversed-phase high-performance liquid chromatography with precolumn o-phthalaldehyde and ethanethiol (ET) derivatization is described. In order to improve the signal and stability of analytes, several important factors including precipitant reagent, derivatization conditions and detection wavelengths were optimized. The recovery of the analytes in biological matrix was the highest when 4% sulfosalicylic acid (1:1, v/v) was used as a precipitant reagent. Optimal fluorescence detection parameters were determined as λex = 340 nm and λem = 444 nm for maximal signal. The signal of analytes was the highest when the reagent ET and borate buffer of pH 9.9 were used in the derivatization solution. And the corresponding derivative products were stable up to 19 h. The validated method had been successfully applied to monitor ASN depletion and l-aspartic acid, l-glutamine, l-glutamic acid levels in pediatric patients during l-asparaginase therapy.
Collapse
Affiliation(s)
- Mei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Yong Zhang
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Siqi Ren
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Yongren Wang
- Department of Hematology and Oncology Children's Hospital of Nanjing Medical University, Key laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Rui Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
20
|
Hayton S, Maker GL, Mullaney I, Trengove RD. Experimental design and reporting standards for metabolomics studies of mammalian cell lines. Cell Mol Life Sci 2017; 74:4421-4441. [PMID: 28669031 PMCID: PMC11107723 DOI: 10.1007/s00018-017-2582-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023]
Abstract
Metabolomics is an analytical technique that investigates the small biochemical molecules present within a biological sample isolated from a plant, animal, or cultured cells. It can be an extremely powerful tool in elucidating the specific metabolic changes within a biological system in response to an environmental challenge such as disease, infection, drugs, or toxins. A historically difficult step in the metabolomics pipeline is in data interpretation to a meaningful biological context, for such high-variability biological samples and in untargeted metabolomics studies that are hypothesis-generating by design. One way to achieve stronger biological context of metabolomic data is via the use of cultured cell models, particularly for mammalian biological systems. The benefits of in vitro metabolomics include a much greater control of external variables and no ethical concerns. The current concerns are with inconsistencies in experimental procedures and level of reporting standards between different studies. This review discusses some of these discrepancies between recent studies, such as metabolite extraction and data normalisation. The aim of this review is to highlight the importance of a standardised experimental approach to any cultured cell metabolomics study and suggests an example procedure fully inclusive of information that should be disclosed in regard to the cell type/s used and their culture conditions. Metabolomics of cultured cells has the potential to uncover previously unknown information about cell biology, functions and response mechanisms, and so the accurate biological interpretation of the data produced and its ability to be compared to other studies should be considered vitally important.
Collapse
Affiliation(s)
- Sarah Hayton
- Separation Sciences and Metabolomics Laboratories, Murdoch University, Perth, WA, Australia
- School of Veterinary and Life Sciences, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
| | - Garth L Maker
- Separation Sciences and Metabolomics Laboratories, Murdoch University, Perth, WA, Australia.
- School of Veterinary and Life Sciences, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia.
| | - Ian Mullaney
- School of Veterinary and Life Sciences, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
| | - Robert D Trengove
- Separation Sciences and Metabolomics Laboratories, Murdoch University, Perth, WA, Australia
| |
Collapse
|
21
|
Kapoore RV, Coyle R, Staton CA, Brown NJ, Vaidyanathan S. Influence of washing and quenching in profiling the metabolome of adherent mammalian cells: a case study with the metastatic breast cancer cell line MDA-MB-231. Analyst 2017; 142:2038-2049. [PMID: 28497155 DOI: 10.1039/c7an00207f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolome characterisation is a powerful tool in oncology. To obtain a valid description of the intracellular metabolome, two of the preparatory steps are crucial, namely washing and quenching. Washing must effectively remove the extracellular media components and quenching should stop the metabolic activities within the cell, without altering the membrane integrity of the cell. Therefore, it is important to evaluate the efficiency of the washing and quenching solvents. In this study, we employed two previously optimised protocols for simultaneous quenching and extraction, and investigated the effects of a number of washing steps/solvents and quenching solvent additives, on metabolite leakage from the adherent metastatic breast cancer cell line MDA-MB-231. We explored five washing protocols and five quenching protocols (including a control for each), and assessed for effectiveness by detecting ATP in the medium and cell morphology changes through scanning electron microscopy (SEM) analyses. Furthermore, we studied the overall recovery of eleven different metabolite classes using the GC-MS technique and compared the results with those obtained from the ATP assay and SEM analysis. Our data demonstrate that a single washing step with PBS and quenching with 60% methanol supplemented with 70 mM HEPES (-50 °C) results in minimum leakage of intracellular metabolites. Little or no interference of PBS (used in washing) and methanol/HEPES (used in quenching) on the subsequent GC-MS analysis step was noted. Together, these findings provide for the first time a systematic study into the washing and quenching steps of the metabolomics workflow for studying adherent mammalian cells, which we believe will improve reliability in the application of metabolomics technology to study adherent mammalian cell metabolism.
Collapse
Affiliation(s)
- Rahul Vijay Kapoore
- ChELSI Institute, Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| | - Rachael Coyle
- ChELSI Institute, Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK. and Department of Oncology and Metabolism, Faculty of Dentistry, Medicine and Health, The University of Sheffield, Sheffield, S10 2RX, UK
| | - Carolyn A Staton
- Department of Oncology and Metabolism, Faculty of Dentistry, Medicine and Health, The University of Sheffield, Sheffield, S10 2RX, UK
| | - Nicola J Brown
- Department of Oncology and Metabolism, Faculty of Dentistry, Medicine and Health, The University of Sheffield, Sheffield, S10 2RX, UK
| | - Seetharaman Vaidyanathan
- ChELSI Institute, Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| |
Collapse
|
22
|
Steininger PA, Strasser EF, Ziehe B, Eckstein R, Rauh M. Change of the metabolomic profile during short-term mononuclear cell storage. Vox Sang 2017; 112:163-172. [PMID: 28052337 DOI: 10.1111/vox.12482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/05/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Short-term storage of leukapheresis products used for immunotherapeutic mononuclear cell (MNC) products is a frequent event. The analysis of time-related metabolic patterns enables the characterization of storage-related effects in MNCs and the hypothesis-based optimization of the MNC medium. MATERIALS AND METHODS The MNC products from seven leukapheresis procedures were stored within a closed bag system for 48 h. Concentrations of amino acids, biogenic amines, phospho- and sphingolipids and hexoses in the medium were measured by targeted metabolomics. The viability of MNC subpopulations was assayed by Annexin V (AnV) and JC-1 staining. RESULTS Glucose depletion and a significant change of the acylcarnitine profile are early events within the first 24 h of storage. In contrast, for most amino acids, the maximum increase was observed at 48 h of storage as mirrored by an increase in the amino acid levels by a mean factor of 1·2 (1·3, 2·0) after 6 h (24 h, 48 h, respectively). This was except for the concentrations of glutamine and lysine, which did not change significantly. The taurine concentration showed a twofold increase within the first 24 h and remained constant thereafter. The steepest increase in AnV+ and 7-AAD+ CD4+ T cells was found between 24 and 48 h. CONCLUSION The time-course of apoptosis and metabolic patterns in the MNC products demonstrate that 24 h of storage is a decisive time-point, as afterwards key metabolic pathways showed nonlinear detrimental changes. Optimization of storage by supplementation of specific substrates demands therefore an early intervention.
Collapse
Affiliation(s)
- P A Steininger
- Department of Transfusion Medicine and Haemostaseology, University Hospital of Erlangen, Erlangen, Germany
| | - E F Strasser
- Department of Transfusion Medicine and Haemostaseology, University Hospital of Erlangen, Erlangen, Germany
| | - B Ziehe
- Department of Transfusion Medicine and Haemostaseology, University Hospital of Erlangen, Erlangen, Germany
| | - R Eckstein
- Department of Transfusion Medicine and Haemostaseology, University Hospital of Erlangen, Erlangen, Germany
| | - M Rauh
- Department of Paediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
23
|
Manig F, Kuhne K, von Neubeck C, Schwarzenbolz U, Yu Z, Kessler BM, Pietzsch J, Kunz-Schughart LA. The why and how of amino acid analytics in cancer diagnostics and therapy. J Biotechnol 2017; 242:30-54. [DOI: 10.1016/j.jbiotec.2016.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
|
24
|
Zhang T, Zhang A, Qiu S, Yang S, Wang X. Current Trends and Innovations in Bioanalytical Techniques of Metabolomics. Crit Rev Anal Chem 2015; 46:342-51. [DOI: 10.1080/10408347.2015.1079475] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia 2015; 30:209-18. [DOI: 10.1038/leu.2015.213] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/03/2015] [Accepted: 07/10/2015] [Indexed: 01/08/2023]
|
26
|
Anishkin A, Vanegas JM, Rogers DM, Lorenzi PL, Chan WK, Purwaha P, Weinstein JN, Sukharev S, Rempe SB. Catalytic Role of the Substrate Defines Specificity of Therapeutic l-Asparaginase. J Mol Biol 2015; 427:2867-85. [DOI: 10.1016/j.jmb.2015.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/20/2015] [Accepted: 06/26/2015] [Indexed: 12/23/2022]
|
27
|
Tsun ZY, Possemato R. Amino acid management in cancer. Semin Cell Dev Biol 2015; 43:22-32. [PMID: 26277542 PMCID: PMC4800996 DOI: 10.1016/j.semcdb.2015.08.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/21/2015] [Accepted: 08/09/2015] [Indexed: 12/30/2022]
Abstract
Amino acids have a dual role in cellular metabolism, as they are both the building blocks for protein synthesis and intermediate metabolites which fuel other biosynthetic reactions. Recent work has demonstrated that deregulation of both arms of amino acid management are common alterations seen in cancer. Among the most highly consumed nutrients by cancer cells are the amino acids glutamine and serine, and the biosynthetic pathways that metabolize them are required in various cancer subtypes and the object of current efforts to target cancer metabolism. Also altered in cancer are components of the machinery which sense amino acid sufficiency, nucleated by the mechanistic target of rapamycin (mTOR), a key regulator of cell growth via modulation of key processes including protein synthesis and autophagy. The precise ways in which altered amino acid management supports cellular transformation remain mostly elusive, and a fuller mechanistic understanding of these processes will be important for efforts to exploit such alterations for cancer therapy.
Collapse
Affiliation(s)
- Zhi-Yang Tsun
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Richard Possemato
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
28
|
Song Y, Zhang N, Shi S, Li J, Zhang Q, Zhao Y, Jiang Y, Tu P. Large-scale qualitative and quantitative characterization of components in Shenfu injection by integrating hydrophilic interaction chromatography, reversed phase liquid chromatography, and tandem mass spectrometry. J Chromatogr A 2015; 1407:106-18. [PMID: 26143607 DOI: 10.1016/j.chroma.2015.06.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/11/2015] [Accepted: 06/14/2015] [Indexed: 11/25/2022]
Abstract
It is of great importance to clarify in depth the chemical composition, including qualitative and quantitative aspects, of traditional Chinese medicine (TCM) injection that contains a great number of hydrophilic and hydrophobic ingredients to guarantee its safe medication in clinic. Column-switching hydrophilic interaction liquid chromatography-reversed phase liquid chromatography coupled with tandem mass spectrometry (HILIC-RPLC-MS/MS) has been revealed to be advantageous at simultaneous measurement of compounds covering a broad polarity range. Previous studies have profiled the hydrophobic components, mainly aconite alkaloids and ginsenosides, in Shenfu Injection (SFI); however, the hydrophilic substances haven't been taken into account. In the present study, we aim to holistically characterize the hydrophilic constituents and to simultaneously quantitate both hydrophilic and hydrophobic components in SFI. A strategy integrating predefined multiple reaction monitoring, step-wise multiple ion monitoring, and enhanced product ion scans was proposed to universally screen the hydrophilic substances using a hybrid triple quadrupole-linear ion trap mass spectrometer. Structural identification was carried out by comparing with authentic compounds, analyzing MS(2) spectra, and referring to accessible databases (e.g., MassBank, METLIN and HMDB). A total of 157 hydrophilic compounds were detected from SFI, and 154 ones were identified as amino acids, nucleosides, organic acid, carbohydrates, etc. A column-switching HILIC-RPLC-MS/MS system was developed and validated for simultaneously quantitative analysis of 40 primary hydrophilic and hydrophobic ingredients in SFI, including eleven amino acids, nine nucleosides, nine aconite alkaloids, and eleven ginsenosides. Taken together, the findings obtained could provide meaningful information for comprehensively understanding the chemical composition and offer a reliable approach for the quality control of SFI.
Collapse
Affiliation(s)
- Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Na Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China; Baotou Medical College, Baotou 014060, China
| | - Shepo Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qian Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yunfang Zhao
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
29
|
Parmentier JH, Maggi M, Tarasco E, Scotti C, Avramis VI, Mittelman SD. Glutaminase activity determines cytotoxicity of L-asparaginases on most leukemia cell lines. Leuk Res 2015; 39:757-62. [PMID: 25941002 DOI: 10.1016/j.leukres.2015.04.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 01/16/2023]
Abstract
L-Asparaginase (ASNase) is a front-line chemotherapy for acute lymphoblastic leukemia (ALL), which acts by deaminating asparagine and glutamine. To evaluate the importance of glutaminase activity, we exploited a recently developed mutant of Helicobacter pylori ASNase (dm HpA), with amino acid substitutions M121C/T169M. The mutant form has the same asparaginase activity as wild-type but lacks glutaminase activity. Wild-type and dm HpA were compared with the clinically used ASNases from Escherichia coli (l-ASP) and Erwinia chrysanthemi (ERWase). Asparaginase activity was similar for all isoforms, while glutaminase activity followed the rank order: ERWase>l-ASP>wild-type HpA>dm HpA. Cytotoxic efficacy of ASNases was tested on 11 human leukemia cell lines and two patient-derived ALL samples. Two cell lines which we had previously shown to be asparagine-dependent were equally sensitive to the asparaginase isoforms. The other nine lines and the two patient-derived samples were more sensitive to isoforms with higher glutaminase activities. ERWase was overall the most effective ASNase on all cell lines tested whereas dm HpA, having the lowest glutaminase activity, was the least effective. These data demonstrate that asparaginase activity alone may not be sufficient for ASNase cytotoxicity, and that glutaminase activity may be required for full anti-leukemic efficacy.
Collapse
Affiliation(s)
- Jean Hugues Parmentier
- Center for Endocrinology, Diabetes & Metabolism, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Maristella Maggi
- Department of Molecular Medicine, Unit of Immunology and General Pathology, University of Pavia, Italy
| | - Erika Tarasco
- Department of Molecular Medicine, Unit of Immunology and General Pathology, University of Pavia, Italy
| | - Claudia Scotti
- Department of Molecular Medicine, Unit of Immunology and General Pathology, University of Pavia, Italy
| | - Vassilios I Avramis
- Center for Childhood Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Steven D Mittelman
- Center for Endocrinology, Diabetes & Metabolism, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
30
|
Song Q, Song Y, Zhang N, Li J, Jiang Y, Zhang K, Zhang Q, Tu P. Potential of hyphenated ultra-high performance liquid chromatography-scheduled multiple reaction monitoring algorithm for large-scale quantitative analysis of traditional Chinese medicines. RSC Adv 2015. [DOI: 10.1039/c5ra09429a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The combination of a core–shell ADME column with a sMRM algorithm offers the potential for large-scale quantitative analysis of the components in TCMs by providing not only high quality quantitative signals but also reliable MS2 spectra.
Collapse
Affiliation(s)
- Qingqing Song
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- China
- School of Chinese Materia Medica
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| | - Na Zhang
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- China
- School of Chinese Materia Medica
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Kerong Zhang
- Application Support Center
- AB SCIEX
- Shanghai 200233
- China
| | - Qian Zhang
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| |
Collapse
|
31
|
Purwaha P, Silva L, Hawke DH, Weinstein JN, Lorenzi PL. An artifact in LC-MS/MS measurement of glutamine and glutamic acid: in-source cyclization to pyroglutamic acid. Anal Chem 2014; 86:5633-7. [PMID: 24892977 PMCID: PMC4063328 DOI: 10.1021/ac501451v] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/03/2014] [Indexed: 02/06/2023]
Abstract
Advances in metabolomics, particularly for research on cancer, have increased the demand for accurate, highly sensitive methods for measuring glutamine (Gln) and glutamic acid (Glu) in cell cultures and other biological samples. N-terminal Gln and Glu residues in proteins or peptides have been reported to cyclize to pyroglutamic acid (pGlu) during liquid chromatography (LC)-mass spectrometry (MS) analysis, but cyclization of free Gln and Glu to free pGlu during LC-MS analysis has not been well-characterized. Using an LC-MS/MS protocol that we developed to separate Gln, Glu, and pGlu, we found that free Gln and Glu cyclize to pGlu in the electrospray ionization source, revealing a previously uncharacterized artifact in metabolomic studies. Analysis of Gln standards over a concentration range from 0.39 to 200 μM indicated that a minimum of 33% and maximum of almost 100% of Gln was converted to pGlu in the ionization source, with the extent of conversion dependent on fragmentor voltage. We conclude that the sensitivity and accuracy of Gln, Glu, and pGlu quantitation by electrospray ionization-based mass spectrometry can be improved dramatically by using (i) chromatographic conditions that adequately separate the three metabolites, (ii) isotopic internal standards to correct for in-source pGlu formation, and (iii) user-optimized fragmentor voltage for acquisition of the MS spectra. These findings have immediate impact on metabolomics and metabolism research using LC-MS technologies.
Collapse
Affiliation(s)
- Preeti Purwaha
- Department of Bioinformatics and
Computational Biology and Proteomics and
Metabolomics Facility, Department of Pathology, MD Anderson Cancer
Center, University of Texas, Houston, Texas 77054, United States
| | - Leslie
P. Silva
- Department of Bioinformatics and
Computational Biology and Proteomics and
Metabolomics Facility, Department of Pathology, MD Anderson Cancer
Center, University of Texas, Houston, Texas 77054, United States
| | - David H. Hawke
- Department of Bioinformatics and
Computational Biology and Proteomics and
Metabolomics Facility, Department of Pathology, MD Anderson Cancer
Center, University of Texas, Houston, Texas 77054, United States
| | - John N. Weinstein
- Department of Bioinformatics and
Computational Biology and Proteomics and
Metabolomics Facility, Department of Pathology, MD Anderson Cancer
Center, University of Texas, Houston, Texas 77054, United States
| | - Philip L. Lorenzi
- Department of Bioinformatics and
Computational Biology and Proteomics and
Metabolomics Facility, Department of Pathology, MD Anderson Cancer
Center, University of Texas, Houston, Texas 77054, United States
| |
Collapse
|
32
|
The glutaminase activity of L-asparaginase is not required for anticancer activity against ASNS-negative cells. Blood 2014; 123:3596-606. [PMID: 24659632 DOI: 10.1182/blood-2013-10-535112] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
L-Asparaginase (L-ASP) is a key component of therapy for acute lymphoblastic leukemia. Its mechanism of action, however, is still poorly understood, in part because of its dual asparaginase and glutaminase activities. Here, we show that L-ASP's glutaminase activity is not always required for the enzyme's anticancer effect. We first used molecular dynamics simulations of the clinically standard Escherichia coli L-ASP to predict what mutated forms could be engineered to retain activity against asparagine but not glutamine. Dynamic mapping of enzyme substrate contacts identified Q59 as a promising mutagenesis target for that purpose. Saturation mutagenesis followed by enzymatic screening identified Q59L as a variant that retains asparaginase activity but shows undetectable glutaminase activity. Unlike wild-type L-ASP, Q59L is inactive against cancer cells that express measurable asparagine synthetase (ASNS). Q59L is potently active, however, against ASNS-negative cells. Those observations indicate that the glutaminase activity of L-ASP is necessary for anticancer activity against ASNS-positive cell types but not ASNS-negative cell types. Because the clinical toxicity of L-ASP is thought to stem from its glutaminase activity, these findings suggest the hypothesis that glutaminase-negative variants of L-ASP would provide larger therapeutic indices than wild-type L-ASP for ASNS-negative cancers.
Collapse
|