1
|
Fuica-Carrasco C, Toro-Núñez Ó, Lira-Noriega A, Pérez AJ, Hernández V. Metabolome expression in Eucryphia cordifolia populations: Role of seasonality and ecological niche centrality hypothesis. JOURNAL OF PLANT RESEARCH 2023; 136:827-839. [PMID: 37486392 DOI: 10.1007/s10265-023-01483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
The ecological niche centrality hypothesis states that population abundance is determined by the position in the ecological niche, expecting higher abundances towards the center of the niche and lower at the periphery. However, the variations in the conditions that favor the persistence of populations between the center and the periphery of the niche can be a surrogate of stress factors that are reflected in the production of metabolites in plants. In this study we tested if metabolomic similarity and diversity in populations of the tree species Eucryphia cordifolia Cav. vary according to their position with respect to the structure of the ecological niche. We hypothesize that populations growing near the centroid should exhibit lower metabolites diversity than plants growing at the periphery of the niche. The ecological niche of the species was modeled using correlative approaches and bioclimatic variables to define central and peripheral localities from which we chose four populations to obtain their metabolomic information using UHPLC-DAD-QTOF-MS. We observed that populations farther away from the centroid tend to have higher metabolome diversity, thus supporting our expectation of the niche centrality hypothesis. Nonetheless, the Shannon index showed a marked variation in metabolome diversity at the seasonal level, with summer and autumn being the periods with higher metabolite diversity compared to winter and spring. We conclude that both the environmental variation throughout the year in combination with the structure of the ecological niche are relevant to understand the variation in expression of metabolites in plants.
Collapse
Affiliation(s)
- Camila Fuica-Carrasco
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, CP 40300000, Chile.
| | - Óscar Toro-Núñez
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, CP 40300000, Chile
| | - Andrés Lira-Noriega
- CONAHCyT Research Fellow, Red de Estudios Moleculares Avanzados, Instituto de Ecología, Mexico City, A.C, México
| | - Andy J Pérez
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Casilla 160-C, Concepción, CP 40300000, Chile
| | - Víctor Hernández
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, CP 40300000, Chile
| |
Collapse
|
2
|
Chu MJ, Li M, Zhao Y. Dimeric pyrrole-imidazole alkaloids: sources, structures, bioactivities and biosynthesis. Bioorg Chem 2023; 133:106332. [PMID: 36773454 DOI: 10.1016/j.bioorg.2022.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Pyrrole-imidazole alkaloids (PIAs) constitute a highly diverse and densely functionalized subclass of marine natural products. Among them, the uncommon dimeric PIAs with ornate molecular architectures, attractive biological properties and interesting biosynthetic origin have spurred a considerable interest of chemists and biologists. The present review comprehensively summarized 84 dimeric PIAs discovered during the period from 1981 to September 2022, covering their source organisms, chemical structures, biological activities as well as biosynthesis. For a better understanding, these structurally intricate PIA dimers are firstly classified and presented according to their carbon skeleton features as well as biosynthesis pathways. Furthermore, relevant summaries focusing on the source organisms and the associated bioactivities of these compounds belonging to different chemical classes are also provided, which will help elucidate the fascinating chemistry and biology of these unusual PIA dimers.
Collapse
Affiliation(s)
- Mei-Jun Chu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Meng Li
- Department of Pharmacy, Qingdao Central Hospital, Qingdao 266042, China
| | - Yongda Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
3
|
Tan LT. Impact of Marine Chemical Ecology Research on the Discovery and Development of New Pharmaceuticals. Mar Drugs 2023; 21:174. [PMID: 36976223 PMCID: PMC10055925 DOI: 10.3390/md21030174] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Diverse ecologically important metabolites, such as allelochemicals, infochemicals and volatile organic chemicals, are involved in marine organismal interactions. Chemically mediated interactions between intra- and interspecific organisms can have a significant impact on community organization, population structure and ecosystem functioning. Advances in analytical techniques, microscopy and genomics are providing insights on the chemistry and functional roles of the metabolites involved in such interactions. This review highlights the targeted translational value of several marine chemical ecology-driven research studies and their impact on the sustainable discovery of novel therapeutic agents. These chemical ecology-based approaches include activated defense, allelochemicals arising from organismal interactions, spatio-temporal variations of allelochemicals and phylogeny-based approaches. In addition, innovative analytical techniques used in the mapping of surface metabolites as well as in metabolite translocation within marine holobionts are summarized. Chemical information related to the maintenance of the marine symbioses and biosyntheses of specialized compounds can be harnessed for biomedical applications, particularly in microbial fermentation and compound production. Furthermore, the impact of climate change on the chemical ecology of marine organisms-especially on the production, functionality and perception of allelochemicals-and its implications on drug discovery efforts will be presented.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| |
Collapse
|
4
|
Abstract
BACKGROUND Marine ecosystems are hosts to a vast array of organisms, being among the most richly biodiverse locations on the planet. The study of these ecosystems is very important, as they are not only a significant source of food for the world but also have, in recent years, become a prolific source of compounds with therapeutic potential. Studies of aspects of marine life have involved diverse fields of marine science, and the use of metabolomics as an experimental approach has increased in recent years. As part of the "omics" technologies, metabolomics has been used to deepen the understanding of interactions between marine organisms and their environment at a metabolic level and to discover new metabolites produced by these organisms. AIM OF REVIEW This review provides an overview of the use of metabolomics in the study of marine organisms. It also explores the use of metabolomics tools common to other fields such as plants and human metabolomics that could potentially contribute to marine organism studies. It deals with the entire process of a metabolomic study, from sample collection considerations, metabolite extraction, analytical techniques, and data analysis. It also includes an overview of recent applications of metabolomics in fields such as marine ecology and drug discovery and future perspectives of its use in the study of marine organisms. KEY SCIENTIFIC CONCEPTS OF REVIEW The review covers all the steps involved in metabolomic studies of marine organisms including, collection, extraction methods, analytical tools, statistical analysis, and dereplication. It aims to provide insight into all aspects that a newcomer to the field should consider when undertaking marine metabolomics.
Collapse
Affiliation(s)
- Lina M Bayona
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Marine Biodiversity, 2333 CR, Leiden, The Netherlands
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands.
- College of Pharmacy, Kyung Hee University, 130-701, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Oceanographic setting influences the prokaryotic community and metabolome in deep-sea sponges. Sci Rep 2022; 12:3356. [PMID: 35233042 PMCID: PMC8888554 DOI: 10.1038/s41598-022-07292-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/16/2022] [Indexed: 11/09/2022] Open
Abstract
Marine sponges (phylum Porifera) are leading organisms for the discovery of bioactive compounds from nature. Their often rich and species-specific microbiota is hypothesised to be producing many of these compounds. Yet, environmental influences on the sponge-associated microbiota and bioactive compound production remain elusive. Here, we investigated the changes of microbiota and metabolomes in sponges along a depth range of 1232 m. Using 16S rRNA gene amplicon sequencing and untargeted metabolomics, we assessed prokaryotic and chemical diversities in three deep-sea sponge species: Geodia barretti, Stryphnus fortis, and Weberella bursa. Both prokaryotic communities and metabolome varied significantly with depth, which we hypothesized to be the effect of different water masses. Up to 35.5% of microbial ASVs (amplicon sequence variants) showed significant changes with depth while phylum-level composition of host microbiome remained unchanged. The metabolome varied with depth, with relative quantities of known bioactive compounds increasing or decreasing strongly. Other metabolites varying with depth were compatible solutes regulating osmolarity of the cells. Correlations between prokaryotic community and the bioactive compounds in G. barretti suggested members of Acidobacteria, Proteobacteria, Chloroflexi, or an unclassified prokaryote as potential producers.
Collapse
|
6
|
Zhang S, Song W, Nothias LF, Couvillion SP, Webster N, Thomas T. Comparative metabolomic analysis reveals shared and unique chemical interactions in sponge holobionts. MICROBIOME 2022; 10:22. [PMID: 35105377 PMCID: PMC8805237 DOI: 10.1186/s40168-021-01220-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sponges are ancient sessile metazoans, which form with their associated microbial symbionts a complex functional unit called a holobiont. Sponges are a rich source of chemical diversity; however, there is limited knowledge of which holobiont members produce certain metabolites and how they may contribute to chemical interactions. To address this issue, we applied non-targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography mass spectrometry (GC-MS) to either whole sponge tissue or fractionated microbial cells from six different, co-occurring sponge species. RESULTS Several metabolites were commonly found or enriched in whole sponge tissue, supporting the notion that sponge cells produce them. These include 2-methylbutyryl-carnitine, hexanoyl-carnitine and various carbohydrates, which may be potential food sources for microorganisms, as well as the antagonistic compounds hymenialdisine and eicosatrienoic acid methyl ester. Metabolites that were mostly observed or enriched in microbial cells include the antioxidant didodecyl 3,3'-thiodipropionate, the antagonistic compounds docosatetraenoic acid, and immune-suppressor phenylethylamide. This suggests that these compounds are mainly produced by the microbial members in the sponge holobiont, and are potentially either involved in inter-microbial competitions or in defenses against intruding organisms. CONCLUSIONS This study shows how different chemical functionality is compartmentalized between sponge hosts and their microbial symbionts and provides new insights into how chemical interactions underpin the function of sponge holobionts. Video abstract.
Collapse
Affiliation(s)
- Shan Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052 Australia
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, 2052 Australia
| | - Weizhi Song
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, 2052 Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052 Australia
| | - Louis-Félix Nothias
- School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
| | - Sneha P. Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, 2052 Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052 Australia
| |
Collapse
|
7
|
Jimenez-Gutierrez LR. Female reproduction-specific proteins, origins in marine species, and their evolution in the animal kingdom. J Bioinform Comput Biol 2022; 20:2240001. [PMID: 35023815 DOI: 10.1142/s0219720022400017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The survival of a species largely depends on the ability of individuals to reproduce, thus perpetuating their life history. The advent of metazoans (i.e. pluricellular animals) brought about the evolution of specialized tissues and organs, which in turn led to the development of complex protein regulatory pathways. This study sought to elucidate the evolutionary relationships between female reproduction-associated proteins by analyzing the transcriptomes of representative species from a selection of marine invertebrate phyla. Our study identified more than 50 reproduction-related genes across a wide evolutionary spectrum, from Porifera to Vertebrata. Among these, a total of 19 sequences had not been previously reported in at least one phylum, particularly in Porifera. Moreover, most of the structural differences between these proteins did not appear to be determined by environmental pressures or reproductive strategies, but largely obeyed a distinguishable evolutionary pattern from sponges to mammals.
Collapse
Affiliation(s)
- Laura Rebeca Jimenez-Gutierrez
- Facultad de Ciencias del Mar, Universidad Autonoma de Sinaloa, Mazatlan, Sinaloa, Mexico 82000, Mexico.,CONACYT, Direccion de Catedras- CONACYT, CDMX, Mexico 03940, Mexico
| |
Collapse
|
8
|
Bayona LM, Kim MS, Swierts T, Hwang GS, de Voogd NJ, Choi YH. Metabolic variation in Caribbean giant barrel sponges: Influence of age and sea-depth. MARINE ENVIRONMENTAL RESEARCH 2021; 172:105503. [PMID: 34673313 DOI: 10.1016/j.marenvres.2021.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The biochemical differentiation of widely distributed long-living marine organisms according to their age or the depth of waters in which they grow is an intriguing topic in marine biology. Especially sessile life forms, such as sponges, could be expected to actively regulate biological processes and interactions with their environment through chemical signals in a multidimensional manner. In recent years, the development of chemical profiling methods such as metabolomics provided an approach that has encouraged the investigation of the chemical interactions of these organisms. In this study, LC-MS based metabolomics followed by Feature-based molecular networking (FBMN) was used to explore the effects of both biotic and environmental factors on the metabolome of giant barrel sponges, chosen as model organisms as they are distributed throughout a wide range of sea-depths. This allowed the identification of differences in the metabolic composition of the sponges related to their age and depth.
Collapse
Affiliation(s)
- Lina M Bayona
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands.
| | - Min-Sun Kim
- Food Analysis Research Center, Korea Food Research Institute, Wanju, South Korea
| | - Thomas Swierts
- Naturalis Biodiversity Center, Marine Biodiversity, 2333 CR, Leiden, the Netherlands
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Marine Biodiversity, 2333 CR, Leiden, the Netherlands; Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, the Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands; College of Pharmacy, Kyung Hee University, 130, Seoul, South Korea
| |
Collapse
|
9
|
Vad J, Barnhill KA, Kazanidis G, Roberts JM. Human impacts on deep-sea sponge grounds: Applying environmental omics to monitoring. ADVANCES IN MARINE BIOLOGY 2021; 89:53-78. [PMID: 34583815 DOI: 10.1016/bs.amb.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sponges (Phylum Porifera) are the oldest extant Metazoans. In the deep sea, sponges can occur at high densities forming habitats known as sponge grounds. Sponge grounds can extend over large areas of up to hundreds of km2 and are biodiversity hotspots. However, as human activities, including deep-water hydrocarbon extraction, continue to expand into areas harbouring sponge grounds, understanding how anthropogenic impacts affect sponges and the ecosystem services they provide at multiple biological scales (community, individual and (sub)cellular levels) is key for achieving sustainable management. This chapter (1) provides an update to the chapter of Advances in Marine Biology Volume 79 entitled "Potential Impacts of Offshore Oil and Gas Activities on Deep-Sea Sponges and the Habitats They Form" and (2) discusses the use of omics as a future tool for deep-sea ecosystem monitoring. While metagenomics and (meta)transcriptomics studies have contributed to improve our understanding of sponge biology in recent years, metabolomics analysis has mostly been used to identify natural products. The sponge metabolome, therefore, remains vastly unknown despite the fact that the metabolome is a key link between the genotype and phenotype, giving us a unique new insight to how key components of an ecosystem are functioning. As the fraction of the metabolome released into the seawater, the sponge exometabolome has only just started to be characterised in comparative environmental metabolomic studies. Yet, the sponge exometabolome constitute a unique opportunity for the identification of biomarkers of sponge health as compounds can be measured in seawater, bypassing the need for physical samples which can still be difficult to collect in the deep sea. Within sponge grounds, the characterisation of a shared sponge exometabolome could lead to the identification of biomarkers of ecosystem functioning and overall health. Challenges remain in establishing omics approaches in environmental monitoring but constant technological advances and reduction in costs means these techniques will become widely available in the future.
Collapse
Affiliation(s)
- Johanne Vad
- Changing Ocean Research Group, School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom.
| | - Kelsey Archer Barnhill
- Changing Ocean Research Group, School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Georgios Kazanidis
- Changing Ocean Research Group, School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - J Murray Roberts
- Changing Ocean Research Group, School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Erngren I, Smit E, Pettersson C, Cárdenas P, Hedeland M. The Effects of Sampling and Storage Conditions on the Metabolite Profile of the Marine Sponge Geodia barretti. Front Chem 2021; 9:662659. [PMID: 34041223 PMCID: PMC8141568 DOI: 10.3389/fchem.2021.662659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
Geodia barretti is a deep-sea marine sponge common in the north Atlantic and waters outside of Norway and Sweden. The sampling and subsequent treatment as well as storage of sponges for metabolomics analyses can be performed in different ways, the most commonly used being freezing (directly upon collection or later) or by storage in solvent, commonly ethanol, followed by freeze-drying. In this study we therefore investigated different sampling protocols and their effects on the detected metabolite profiles in liquid chromatography-mass spectrometry (LC-MS) using an untargeted metabolomics approach. Sponges (G. barretti) were collected outside the Swedish west coast and pieces from three sponge specimens were either flash frozen in liquid nitrogen, frozen later after the collection cruise, stored in ethanol or stored in methanol. The storage solvents as well as the actual sponge pieces were analyzed, all samples were analyzed with hydrophilic interaction liquid chromatography as well as reversed phase liquid chromatography with high resolution mass spectrometry using full-scan in positive and negative ionization mode. The data were evaluated using multivariate data analysis. The highest metabolite intensities were found in the frozen samples (flash frozen and frozen after sampling cruise) as well as in the storage solvents (methanol and ethanol). Metabolites extracted from the sponge pieces that had been stored in solvent were found in very low intensity, since the majority of metabolites were extracted to the solvents to a high degree. The exception being larger peptides and some lipids. The lowest variation between replicates were found in the flash frozen samples. In conclusion, the preferred method for sampling of sponges for metabolomics was found to be immediate freezing in liquid nitrogen. However, freezing the sponge samples after some time proved to be a reliable method as well, albeit with higher variation between the replicates. The study highlights the importance of saving ethanol extracts after preservation of specimens for biology studies; these valuable extracts could be further used in studies of natural products, chemosystematics or metabolomics.
Collapse
Affiliation(s)
- Ida Erngren
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Eva Smit
- BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Curt Pettersson
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Paco Cárdenas
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mikael Hedeland
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Fagundes TDSF, da Silva LRG, Brito MDF, Schmitz LSS, Rigato DB, Jimenez PC, Soares AR, Costa-Lotufo LV, Muricy G, Vasconcelos TRA, Cass QB, Valverde AL. Metabolomic fingerprinting of Brazilian marine sponges: a case study of Plakinidae species from Fernando de Noronha Archipelago. Anal Bioanal Chem 2021; 413:4301-4310. [PMID: 33963881 DOI: 10.1007/s00216-021-03385-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 02/03/2023]
Abstract
Marine sponges from the Plakinidae family are well known for hosting cytotoxic secondary metabolites and the Brazilian Atlantic coast and its oceanic islands have been considered as a hotspot for the discovery of new Plakinidae species. Herein, we report the chemical profile among cytotoxic extracts obtained from four species of Plakinidae, collected in Fernando de Noronha Archipelago (PE, Northeastern Brazil). Crude organic extracts of Plakinastrella microspiculifera, Plakortis angulospiculatus, Plakortis insularis, and Plakortis petrupaulensis showed strong antiproliferative effects against two different cancer cell lines (HCT-116: 86.7-100%; MCF-7: 74.9-89.5%) at 50 μg/mL, by the MTT assay. However, at a lower concentration (5 μg/mL), high variability in inhibition of cell growth was observed (HCT-116: 17.3-68.7%; MCF-7: 0.00-55.5%), even within two samples of Plakortis insularis which were collected in the west and east sides of the Archipelago. To discriminate the chemical profile, the samples were investigated by UHPLC-HRMS under positive ionization mode. The produced data was uploaded to the Global Natural Products Social Molecular Networking and organized based on spectral similarities for purposes of comparison and annotation. Compounds such as dipeptides, nucleosides and derivatives, polyketides, and thiazine alkaloids were annotated and metabolomic differences were perceived among the species. To the best of our knowledge, this is the first assessment for cytotoxic activity and chemical profiling for Plakinastrella microspiculifera, Plakortis insularis and Plakortis petrupaulensis, revealing other biotechnologically relevant members of the Plakinidae family.
Collapse
Affiliation(s)
- Thayssa da Silva F Fagundes
- Laboratório de Produtos Naturais (LAPROMAR), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-005, Brazil
| | - Larissa Ramos G da Silva
- Laboratório de Produtos Naturais (LAPROMAR), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-005, Brazil.,SEPARARE -Núcleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Mateus de Freitas Brito
- Laboratório de Produtos Naturais (LAPROMAR), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-005, Brazil
| | - Letícia S S Schmitz
- Laboratório de Bioprospecção de Organismos Marinhos, Instituto do Mar, Universidade Federal de São Paulo, Santos, SP, 11070-100, Brazil
| | - Dhiego B Rigato
- Laboratório de Bioprospecção de Organismos Marinhos, Instituto do Mar, Universidade Federal de São Paulo, Santos, SP, 11070-100, Brazil
| | - Paula Christine Jimenez
- Laboratório de Bioprospecção de Organismos Marinhos, Instituto do Mar, Universidade Federal de São Paulo, Santos, SP, 11070-100, Brazil
| | - Angélica Ribeiro Soares
- Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, RJ, 27965-045, Brazil
| | - Letícia V Costa-Lotufo
- Laboratório de Farmacologia Marinha, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Guilherme Muricy
- Laboratório de Porifera, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 20940-040, Brazil
| | - Thatyana Rocha A Vasconcelos
- Laboratório de Produtos Naturais (LAPROMAR), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-005, Brazil
| | - Quezia Bezerra Cass
- SEPARARE -Núcleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Alessandra Leda Valverde
- Laboratório de Produtos Naturais (LAPROMAR), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, 24020-005, Brazil.
| |
Collapse
|
12
|
Integrated analytical workflow for chromatographic profiling and metabolite annotation of a cytotoxic Phorbas amaranthus extract. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1174:122720. [PMID: 33957353 DOI: 10.1016/j.jchromb.2021.122720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
Phorbas is a widely studied genus of marine sponge and produce structurally rich cytotoxic metabolites. Still, only few studies have assessed metabolites present in Brazilian species. To circumvent redundancy, in this work, we applied and herein report the use of a scouting liquid chromatographic system associate to the design of experiment produced by the DryLab® software to obtain a fast and efficient chromatographic separation of the active hexane fraction, further enabling untargeted high-resolution mass spectrometry (HRMS) data. To this end, a crude hydroalcoholic extract of the sponge Phorbas amaranthus collected in Brazilian coast was prepared and partitioned. The cytotoxicity of the crude extract and the fractions was evaluated using tumor cell culture models. Fragmentation pathways assembled from HRMS data allowed the annotation of 18 known Phorbas metabolites, while 17 metabolites were inferred based on Global Natural Product Social Molecular Networking (GNPS), matching with a further 29 metabolites annotated through molecular subnetwork. The workflow employed demonstrates that chromatographic method development can be accelerated by the use of automated scouting systems and DryLab®, which is useful for profiling natural product libraries, as well as data curation by molecular clusters and should be incorporated to the tools of natural product chemists.
Collapse
|
13
|
Orani AM, Vassileva E, Azemard S, Thomas OP. Comparative study on Hg bioaccumulation and biotransformation in Mediterranean and Atlantic sponge species. CHEMOSPHERE 2020; 260:127515. [PMID: 32682130 DOI: 10.1016/j.chemosphere.2020.127515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/06/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
In this work we present an assessment of mercury (Hg) and methyl mercury (MeHg) bioaccumulation in different species of marine sponges collected off the Northwestern Mediterranean and Northeastern Atlantic coasts. Overall the results showed significant accumulation of Hg in sponges, with the Mediterranean sponge Chondrilla nucula exhibiting the highest total Hg content (up to 0.5 mg kg-1) and bio-concentration factor (BCF) up to 23. A significant inter-species variability of Hg bioaccumulation was observed among species collected at the same site. The sponges, collected in marine environment contaminated with Hg show consistently higher Hg accumulation, meaning that the bioaccumulation is proportional to the Hg availability in the surrounding environment. Different extraction protocols were tested for MeHg analysis and, generally, a low MeHg ratio in Hg species (4% and 17% average for Mediterranean and Irish sponges respectively) was detected suggesting a possible demethylation process and therefore a promising role of sponges for Hg bioremediation Additionally, the Hg isotopic composition in these organisms was determined and it showed that MDF (mass dependent fractionation) is the main process in sponges, with the absence of significant MIF. This result suggests a dominant role of associated microbial population in the methylation and/or demethylation processes.
Collapse
Affiliation(s)
- Anna Maria Orani
- International Atomic Energy Agency, Environment Laboratories, 4 Quai Antoine 1er, 98000, Monaco, Principality of Monaco
| | - Emilia Vassileva
- International Atomic Energy Agency, Environment Laboratories, 4 Quai Antoine 1er, 98000, Monaco, Principality of Monaco.
| | - Sabine Azemard
- International Atomic Energy Agency, Environment Laboratories, 4 Quai Antoine 1er, 98000, Monaco, Principality of Monaco
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway, (NUI Galway), University Road, H91 TK33, Galway, Ireland
| |
Collapse
|
14
|
Treberg JR, Martyniuk CJ, Moyes CD. Getting the most out of reductionist approaches in comparative biochemistry and physiology. Comp Biochem Physiol B Biochem Mol Biol 2020; 250:110483. [DOI: 10.1016/j.cbpb.2020.110483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
|
15
|
Bayona LM, van Leeuwen G, Erol Ö, Swierts T, van der Ent E, de Voogd NJ, Choi YH. Influence of Geographical Location on the Metabolic Production of Giant Barrel Sponges ( Xestospongia spp.) Revealed by Metabolomics Tools. ACS OMEGA 2020; 5:12398-12408. [PMID: 32548424 PMCID: PMC7271412 DOI: 10.1021/acsomega.0c01151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Despite their high therapeutic potential, only a limited number of approved drugs originate from marine natural products. A possible reason for this is their broad metabolic variability related to the environment, which can cause reproducibility issues. Consequently, a further understanding of environmental factors influencing the production of metabolites is required. Giant barrel sponges, Xestospongia spp., are a source of many new compounds and are found in a broad geographical range. In this study, the relationship between the metabolome and the geographical location of sponges within the genus Xestospongia spp. was investigated. One hundred and thirty-nine specimens of giant barrel sponges (Xestospongia spp.) collected in four locations, Martinique, Curaçao, Taiwan, and Tanzania, were studied using a multiplatform metabolomics methodology (nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry). A clear grouping of the collected samples according to their location was shown. Metabolomics analysis revealed that sterols and various fatty acids, including polyoxygenated and brominated derivatives, were related to the differences in locations. To explore the relationship between observed metabolic changes and their bioactivity, antibacterial activity was assessed against Escherichia coli and Staphylococcus aureus. The activity was found to correlate with brominated fatty acids. These were isolated and identified as (9E,17E)-18-bromooctadeca-9,17-dien-5,7,15-triynoic acid (1), xestospongic acid (2), (7E,13E,15Z)-14,16-dibromohexadeca-7,13,15-trien-5-ynoic acid (3), and two previously unreported compounds.
Collapse
Affiliation(s)
- Lina M. Bayona
- Natural Products
Laboratory, Institute of Biology, Leiden
University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Gemma van Leeuwen
- Natural Products
Laboratory, Institute of Biology, Leiden
University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Özlem Erol
- Natural Products
Laboratory, Institute of Biology, Leiden
University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Thomas Swierts
- Naturalis
Biodiversity Center, Marine Biodiversity, Darwinweg 2, 2333 CR Leiden, The Netherlands
- Institute
of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Esther van der Ent
- Naturalis
Biodiversity Center, Marine Biodiversity, Darwinweg 2, 2333 CR Leiden, The Netherlands
- Institute
of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Nicole J. de Voogd
- Naturalis
Biodiversity Center, Marine Biodiversity, Darwinweg 2, 2333 CR Leiden, The Netherlands
- Institute
of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products
Laboratory, Institute of Biology, Leiden
University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- College
of Pharmacy, Kyung Hee University, Hoegi-dong 1, Dongdaemun-gu, 02447 Seoul, Republic
of Korea
| |
Collapse
|
16
|
Gaubert J, Payri CE, Vieira C, Solanki H, Thomas OP. High metabolic variation for seaweeds in response to environmental changes: a case study of the brown algae Lobophora in coral reefs. Sci Rep 2019; 9:993. [PMID: 30700781 PMCID: PMC6353962 DOI: 10.1038/s41598-018-38177-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/12/2018] [Indexed: 02/02/2023] Open
Abstract
In the marine environment, macroalgae face changing environmental conditions and some species are known for their high capacity to adapt to the new factors of their ecological niche. Some macroalgal metabolites play diverse ecological functions and belong to the adaptive traits of such species. Because algal metabolites are involved in many processes that shape marine biodiversity, understanding their sources of variation and regulation is therefore of utmost relevance. This work aims at exploring the possible sources of metabolic variations with time and space of four common algal species from the genus Lobophora (Dictyotales, Phaeophyceae) in the New Caledonian lagoon using a UHPLC-HRMS metabolomic fingerprinting approach. While inter-specific differences dominated, a high variability of the metabolome was noticed for each species when changing their natural habitats and types of substrates. Fatty acids derivatives and polyolefins were identified as chemomarkers of these changing conditions. The four seaweeds metabolome also displayed monthly variations over the 13-months survey and a significant correlation was made with sea surface temperature and salinity. This study highlights a relative plasticity for the metabolome of Lobophora species.
Collapse
Affiliation(s)
- Julie Gaubert
- Sorbonne Universités, Collège Doctoral, F-75005, Paris, France.
- UMR ENTROPIE (IRD, UR, CNRS), Institut de Recherche pour le Développement, B.P. A5, 98848, Nouméa Cedex, Nouvelle-Calédonie, France.
| | - Claude E Payri
- UMR ENTROPIE (IRD, UR, CNRS), Institut de Recherche pour le Développement, B.P. A5, 98848, Nouméa Cedex, Nouvelle-Calédonie, France
| | - Christophe Vieira
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281 (S8), 9000, Gent, Belgium
| | - Hiren Solanki
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33, Galway, Ireland
| | - Olivier P Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33, Galway, Ireland
| |
Collapse
|