1
|
Zahoor I, Waters J, Ata N, Datta I, Pedersen TL, Cerghet M, Poisson L, Markovic-Plese S, Rattan R, Taha AY, Newman JW, Giri S. Blood-based targeted metabolipidomics reveals altered omega fatty acid-derived lipid mediators in relapsing-remitting multiple sclerosis patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574253. [PMID: 38260401 PMCID: PMC10802284 DOI: 10.1101/2024.01.04.574253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Unresolved and uncontrolled inflammation is considered a hallmark of pathogenesis in chronic inflammatory diseases like multiple sclerosis (MS), suggesting a defective resolution process. Inflammatory resolution is an active process partially mediated by endogenous metabolites of dietary polyunsaturated fatty acids (PUFA), collectively termed specialized pro-resolving lipid mediators (SPMs). Altered levels of resolution mediators have been reported in several inflammatory diseases and may partly explain impaired inflammatory resolution. Performing LC-MS/MS-based targeted lipid mediator profiling, we observed distinct changes in fatty acid metabolites in serum from 30 relapsing-remitting MS (RRMS) patients relative to 30 matched healthy subjects (HS). Robust linear regression revealed 12 altered lipid mediators after adjusting for confounders (p <0.05). Of these, 15d-PGJ2, PGE3, and LTB5 were increased in MS while PGF2a, 8,9-DiHETrE, 5,6-DiHETrE, 20-HETE, 15-HETE, 12-HETE, 12-HEPE, 14-HDoHE, and DHEA were decreased in MS compared to HS. In addition, 12,13-DiHOME and 12,13-DiHODE were positively correlated with expanded disability status scale values (EDSS). Using Partial Least Squares, we identified several lipid mediators with high VIP scores (VIP > 1: 32% - 52%) of which POEA, PGE3, DHEA, LTB5, and 12-HETE were top predictors for distinguishing between RRMS and HS (AUC =0.75) based on the XGBoost Classifier algorithm. Collectively, these findings suggest an imbalance between inflammation and resolution. Altogether, lipid mediators appear to have potential as diagnostic and prognostic biomarkers for RRMS.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Henry Ford Health, Detroit, 48202, USA
| | - Jeffrey Waters
- Department of Neurology, Henry Ford Health, Detroit, 48202, USA
| | - Nasar Ata
- Department of Neurology, Henry Ford Health, Detroit, 48202, USA
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Health, Detroit, 48202, USA
| | | | - Mirela Cerghet
- Department of Neurology, Henry Ford Health, Detroit, 48202, USA
| | - Laila Poisson
- Department of Public Health Sciences, Henry Ford Health, Detroit, 48202, USA
| | - Silva Markovic-Plese
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ramandeep Rattan
- Division of Gynaecology Oncology, Department of Women’s Health Services, Henry Ford Health, Detroit, 48202, USA
| | - Ameer Y. Taha
- Department of Food and Technology, University of California, Davis, USA
- West Coast Metabolomics Center, Genome Center, University of California-Davis, Davis, CA, 95616, USA
| | - John W. Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California-Davis, Davis, CA, 95616, USA
- Department of Nutrition, University of California-Davis, Davis, CA, 95616, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, 48202, USA
| |
Collapse
|
2
|
Michels KA, Weinstein SJ, Albert PS, Black A, Brotzman M, Diaz-Mayoral NA, Gerlanc N, Huang WY, Sampson JN, Shreves A, Ueland PM, Wyatt K, Wentzensen N, Abnet CC. The Influence of Preanalytical Biospecimen Handling on the Measurement of B Vitamers, Amino Acids, and Other Metabolites in Blood. Biopreserv Biobank 2023; 21:467-476. [PMID: 36622937 PMCID: PMC10616936 DOI: 10.1089/bio.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Introduction: Sample handling can influence biomarker measurement and introduce variability when combining data from multiple studies or study sites. To inform the development of blood collection protocols within a multisite cohort study, we directly quantified concentrations of 54 biomarkers in blood samples subjected to different handling conditions. Materials and Methods: We obtained serum, lithium heparin plasma, and EDTA plasma from 20 adult volunteers. Tubes of chilled whole blood were either centrifuged and processed within 2 hours of collection (the "reference standard") or were stored with cool packs for 24 or 48 hours; centrifuged before and/or after this delay; or collected in tubes with/without gel separators. We used linear mixed models with random intercepts to estimate geometric mean concentrations and relative percent differences across the conditions. Results: Compared to the reference standard tubes, concentrations of many biomarkers changed after processing delays, but changes were often small. In serum, we observed large differences for B vitamers, glutamic acid (37% and 73% increases with 24- and 48-hour delays, respectively), glycine (12% and 23% increases), serine (16% and 27% increases), and acetoacetate (-19% and -26% decreases). Centrifugation timing and separator tube use did not affect concentrations of most biomarkers. Conclusion: Sample handling should be consistent across samples within an analysis. The length of processing delays should be recorded and accounted for when this is not feasible.
Collapse
Affiliation(s)
- Kara A. Michels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Stephanie J. Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Paul S. Albert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Michelle Brotzman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Norma A. Diaz-Mayoral
- BioProcessing Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Nicole Gerlanc
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Joshua N. Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Alaina Shreves
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Kathleen Wyatt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Christian C. Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
3
|
Oxylipins as Potential Regulators of Inflammatory Conditions of Human Lactation. Metabolites 2022; 12:metabo12100994. [PMID: 36295896 PMCID: PMC9610648 DOI: 10.3390/metabo12100994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic low-grade inflammation can be associated with obesity or subclinical mastitis (SCM), which is associated with poor infant growth in low- to middle-income country settings. It is unknown what physiological mechanisms are involved in low milk supply, but our research group has shown that mothers with low milk supply have higher inflammatory markers. Studies investigating oxylipin signaling have the potential to help explain mechanisms that mediate the impacts of inflammation on milk production. Animal studies have reported various elevated oxylipins during postpartum inflammation, mastitis, and mammary involution in ruminant models. Several investigations have quantified oxylipins in human milk, but very few studies have reported circulating oxylipin concentrations during lactation. In addition, there are technical considerations that must be addressed when reporting oxylipin concentrations in human milk. First, the majority of milk oxylipins are esterified in the triglyceride pool, which is not routinely measured. Second, total milk fat should be considered as a covariate when using milk oxylipins to predict outcomes. Finally, storage and handling conditions of milk samples must be carefully controlled to ensure accurate milk oxylipin quantitation, which may be affected by highly active lipases in human milk.
Collapse
|
4
|
Kratz D, Thomas D, Gurke R. Endocannabinoids as potential biomarkers: It's all about pre-analytics. J Mass Spectrom Adv Clin Lab 2021; 22:56-63. [PMID: 34939056 DOI: 10.1016/j.jmsacl.2021.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction Arachidonoyl ethanolamide (AEA) and 2-arachidonoyl glycerol (2-AG) are central lipid mediators of the endocannabinoid system. They are highly relevant due to their involvement in a wide variety of inflammatory, metabolic or malign diseases. Further elucidation of their modes of action and use as biomarkers in an easily accessible matrix, like blood, is restricted by their susceptibility to deviations during blood sampling and physiological co-dependences, which results in high variability of reported concentrations in low ng/mL ranges. Objectives The objective of this review is the identification of critical parameters during the pre-analytical phase and proposal of minimum requirements for reliable determination of endocannabinoids (ECs) in blood samples. Methods Reported physiological processes influencing the EC concentrations were put into context with published pre-analytical research and stability data from bioanalytical method validation. Results The cause for variability in EC concentrations is versatile. In part, they are caused by inter-individual factors like sex, metabolic status and/or diurnal changes. Nevertheless, enzymatic activity in freshly drawn blood samples is the main reason for changing concentrations of AEA and 2-AG, besides additional non-enzymatic isomerization of the latter. Conclusion Blood samples for EC analyses require immediate processing at low temperatures (>0 °C) to maintain sample integrity. Standardization of the respective blood tube or anti-coagulant, sampling time point, applied centrifugal force and complete processing time can further decrease variability caused by sample handling. Nevertheless, extensive characterization of study participants is needed to reduce distortion of clinical data caused by co-variables and facilitate research on the endocannabinoid system.
Collapse
Key Words
- (U)HPLC, (ultra) high performance liquid chromatography
- 1-AG, 1-arachidonoyl glycerol
- 2-AG, 2-arachidonoyl glycerol
- 2-Arachidonoyl glycerol
- AEA, arachidonoyl ethanolamide
- Anandamide
- BMI, body mass index
- Blood sampling
- CBR, cannabinoid receptor
- EC-like, endocannabinoid-like
- ECS, endocannabinoid system
- ECs, endocannabinoids
- EDTA, ethylenediaminetetraacetic acid
- Endocannabinoid
- FAAH, fatty acid amide hydrolase
- FT, freezing temperature
- FTC, freeze–thaw cycles
- HDL, high density lipo protein
- KSCN, potassium thiocyanate
- LLE, liquid–liquid extraction
- MAGL, monoacylglycerol lipase
- MS/MS, tandem mass spectrometry
- O-AEA, virodhamine
- OEA, oleoyl ethanolamide
- PAF, platelet-activating factor
- PEA, palmitoyl ethanolamide
- PMSF, phenylmethylsulfonyl fluoride
- Pre-analytics
- RT, room temperature
- SPE, solid-phase extraction
- WB, whole blood
Collapse
Affiliation(s)
- Daniel Kratz
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Serum metabolomic biomarkers of perceptual speed in cognitively normal and mildly impaired subjects with fasting state stratification. Sci Rep 2021; 11:18964. [PMID: 34556796 PMCID: PMC8460824 DOI: 10.1038/s41598-021-98640-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cognitive decline is associated with both normal aging and early pathologies leading to dementia. Here we used quantitative profiling of metabolites involved in the regulation of inflammation, vascular function, neuronal function and energy metabolism, including oxylipins, endocannabinoids, bile acids, and steroid hormones to identify metabolic biomarkers of mild cognitive impairment (MCI). Serum samples (n = 212) were obtained from subjects with or without MCI opportunistically collected with incomplete fasting state information. To maximize power and stratify the analysis of metabolite associations with MCI by the fasting state, we developed an algorithm to predict subject fasting state when unknown (n = 73). In non-fasted subjects, linoleic acid and palmitoleoyl ethanolamide levels were positively associated with perceptual speed. In fasted subjects, soluble epoxide hydrolase activity and tauro-alpha-muricholic acid levels were negatively associated with perceptual speed. Other cognitive domains showed associations with bile acid metabolism, but only in the non-fasted state. Importantly, this study shows unique associations between serum metabolites and cognitive function in the fasted and non-fasted states and provides a fasting state prediction algorithm based on measurable metabolites.
Collapse
|
6
|
Tobin NH, Murphy A, Li F, Brummel SS, Taha TE, Saidi F, Owor M, Violari A, Moodley D, Chi B, Goodman KD, Koos B, Aldrovandi GM. Comparison of dried blood spot and plasma sampling for untargeted metabolomics. Metabolomics 2021; 17:62. [PMID: 34164733 PMCID: PMC8340475 DOI: 10.1007/s11306-021-01813-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Untargeted metabolomics holds significant promise for biomarker detection and development. In resource-limited settings, a dried blood spot (DBS)-based platform would offer significant advantages over plasma-based approaches that require a cold supply chain. OBJECTIVES The primary goal of this study was to compare the ability of DBS- and plasma-based assays to characterize maternal metabolites. Utility of the two assays was also assessed in the context of a case-control predictive model in pregnant women living with HIV. METHODS Untargeted metabolomics was performed on archived paired maternal plasma and DBS from n = 79 women enrolled in a large clinical trial. RESULTS A total of 984 named biochemicals were detected across both plasma and DBS samples, of which 627 (63.7%), 260 (26.4%), and 97 (9.9%) were detected in both plasma and DBS, plasma alone, and DBS alone, respectively. Variation attributable to study individual (R2 = 0.54, p < 0.001) exceeded that of the sample type (R2 = 0.21, p < 0.001), suggesting that both plasma and DBS were capable of differentiating individual metabolomic profiles. Log-transformed metabolite abundances were strongly correlated (mean Spearman rho = 0.51) but showed low agreement (mean intraclass correlation of 0.15). However, following standardization, DBS and plasma metabolite profiles were strongly concordant (mean intraclass correlation of 0.52). Random forests classification models for cases versus controls identified distinct feature sets with comparable performance in plasma and DBS (86.5% versus 91.2% mean accuracy, respectively). CONCLUSION Maternal plasma and DBS samples yield distinct metabolite profiles highly predictive of the individual subject. In our case study, classification models showed similar performance albeit with distinct feature sets. Appropriate normalization and standardization methods are critical to leverage data from both sample types. Ultimately, the choice of sample type will likely depend on the compounds of interest as well as logistical demands.
Collapse
Affiliation(s)
- Nicole H Tobin
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, California, USA
| | - Aisling Murphy
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at the University of California, Los Angeles, California, USA
| | - Fan Li
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, California, USA
| | - Sean S Brummel
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Taha E Taha
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Friday Saidi
- UNC Project-Malawi, Kamuzu Central Hospital, Lilongwe, Malawi
| | - Maxie Owor
- MU-JHU Research Collaboration (MUJHU CARE LTD) CRS, Kampala, Uganda
| | - Avy Violari
- Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, Soweto, South Africa
| | - Dhayendre Moodley
- Centre for AIDS Research in South Africa, Durban, South Africa
- Department of Obstetrics and Gynecology, School of Clinical Medicine, University of KwaZulu Natal, Durban, South Africa
| | - Benjamin Chi
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Brian Koos
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at the University of California, Los Angeles, California, USA
| | - Grace M Aldrovandi
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, California, USA.
| |
Collapse
|
7
|
Goodman K, Mitchell M, Evans AM, Miller LAD, Ford L, Wittmann B, Kennedy AD, Toal D. Assessment of the effects of repeated freeze thawing and extended bench top processing of plasma samples using untargeted metabolomics. Metabolomics 2021; 17:31. [PMID: 33704583 DOI: 10.1007/s11306-021-01782-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/26/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Clinical metabolomics has utility as a screen for inborn errors of metabolism (IEM) and variant classification in patients with rare disease. It is important to understand and characterize preanalytical factors that influence assay performance during patient sample testing. OBJECTIVES To evaluate the impact of extended thawing of human EDTA plasma samples on ice prior to extraction as well as repeated freeze-thaw cycling of samples to identify compounds that are unstable prior to metabolomic analysis. METHODS Twenty-four (24) donor EDTA plasma samples were collected and immediately frozen at - 80 °C. Twelve samples were thawed on ice and extracted for analysis at time 0, 2, 4, and 6 h. Twelve other donor samples were repeatedly thawed and frozen up to four times and analyzed at each cycle. Compound levels at each time point/freeze-thaw cycle were compared to the control samples using matched-paired t tests to identify analytes affected by each condition. RESULTS We identified 1026 biochemicals across all samples. Incubation of thawed EDTA plasma samples on ice for up to 6 h resulted in < 1% of biochemicals changing significantly. Freeze-thaw cycles affected a greater percentage of the metabolome; ~ 2% of biochemicals changed after 3 freeze-thaw cycles. CONCLUSIONS Our study highlights that the number and magnitude of these changes are not as widespread as other aspects of improper sample handling. In total, < 3% of the metabolome detected on our clinical metabolomics platform should be disqualified when multiple freeze-thaw cycles or extended thawing at 4 °C are performed on a given sample.
Collapse
Affiliation(s)
- Kelli Goodman
- Metabolon, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Matthew Mitchell
- Metabolon, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Anne M Evans
- Metabolon, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Luke A D Miller
- Metabolon, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Lisa Ford
- Metabolon, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Bryan Wittmann
- Metabolon, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Adam D Kennedy
- Metabolon, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Douglas Toal
- Metabolon, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA.
| |
Collapse
|
8
|
An Z, Shi C, Li P, Liu L. Stability of amino acids and related amines in human serum under different preprocessing and pre-storage conditions based on iTRAQ ®-LC-MS/MS. Biol Open 2021; 10:bio.055020. [PMID: 33563610 PMCID: PMC7928226 DOI: 10.1242/bio.055020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Amino acid analysis or metabonomics requires large-scale sample collection, which makes sample storage a critical consideration. However, functional amino acids are often neglected in metabolite stability studies because of the difficulty in detecting and accurately quantifying them with most analysis methods. Here, we investigated the stability of amino acids and related amines in human serum following different preprocessing and pre-storage procedures. Serum samples were collected and subjected to three storage conditions; cold storage (4°C), room temperature storage (22°C), and freezing (−80°C). The concentration of amino acids and related amines were quantified using iTRAQ®-LC-MS/MS with isobaric tagging reagents. Approximately 54.84%, 58.06%, and 48.39% of detectable and target analytes were altered at the 4°C condition, 22°C condition, and when subjected to freeze-thaw cycles, respectively. Some amino acids which are unstable and relatively stable were found. Our study provides detailed amino acid profiles in human serum and suggests pre-treatment measures that could be taken to improve stability. Summary: We investigated the stability of amino acids in serum samples that underwent prolonged storage at 4°C and 22°C, and repeated freeze-thaw cycles at −80°C using stable isotope iTRAQ labeling and liquid chromatography tandem mass spectrometry.
Collapse
Affiliation(s)
- Zhuoling An
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, PR China
| | - Chen Shi
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, PR China
| | - Pengfei Li
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, PR China
| | - Lihong Liu
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, PR China
| |
Collapse
|
9
|
Vuppaladhadiam L, Lager J, Fiehn O, Weiss S, Chesney M, Hasdemir B, Bhargava A. Human Placenta Buffers the Fetus from Adverse Effects of Perceived Maternal Stress. Cells 2021; 10:cells10020379. [PMID: 33673157 PMCID: PMC7918582 DOI: 10.3390/cells10020379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022] Open
Abstract
Maternal stress during pregnancy is linked to several negative birth outcomes. The placenta, a unique pregnancy-specific organ, not only nourishes and protects the fetus but is also the major source of progesterone and estrogens. As the placenta becomes the primary source of maternal progesterone (P4) and estradiol between 6-9 weeks of gestation, and these hormones are critical for maintaining pregnancy, maternal stress may modulate levels of these steroids to impact birth outcomes. The objective was to test whether maternal perceived stress crosses the placental barrier to modulate fetal steroids, including cortisol, which is a downstream indicator of maternal hypothalamic-pituitary-adrenal (HPA) axis regulation and is associated with negative fetal outcomes. Nulliparous women, 18 years or older, with no known history of adrenal or endocrine illness were recruited during their third trimester of pregnancy at the University of California San Francisco (UCSF) Mission Bay hospital obstetrics clinics. Simultaneous measurement of 10 steroid metabolites in maternal (plasma and hair) and fetal (cord blood and placenta) samples was performed using tandem mass spectrometry along with assessment of the perceived stress score and sociodemographic status. While the maternal perceived stress score (PSS) and sociodemographic status were positively associated with each other and each with the body mass index (BMI) (r = 0.73, p = 0.0008; r = 0.48, p = 0.05; r = 0.59, p = 0.014, respectively), PSS did not correlate with maternal or fetal cortisol, cortisone levels, or fetal birth weight. Regardless of maternal PSS or BMI, fetal steroid levels remained stable and unaffected. Progesterone was the only steroid analyte quantifiable in maternal hair and correlated positively with PSS (r = 0.964, p = 0.003), whereas cord estradiol was negatively associated with PSS (r = -0.94, p = 0.017). In conclusion, hair progesterone might serve as a better marker of maternal stress than cortisol or cortisone and maternal PSS negatively impacts fetal estradiol levels. Findings have implications for improved biomarkers of stress and targets for future research to identify factors that buffer the fetus from adverse effects of maternal stress.
Collapse
Affiliation(s)
- Lahari Vuppaladhadiam
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA;
- Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA 94143, USA; (J.L.); (B.H.)
| | - Jeannette Lager
- Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA 94143, USA; (J.L.); (B.H.)
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA 95616, USA;
| | - Sandra Weiss
- Department of Community Health Systems, Stress and Depression Research Lab, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Margaret Chesney
- The Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Burcu Hasdemir
- Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA 94143, USA; (J.L.); (B.H.)
- NIH West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA 95616, USA;
| | - Aditi Bhargava
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA;
- Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA 94143, USA; (J.L.); (B.H.)
- NIH West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA 95616, USA;
- Correspondence: ; Tel.: +1-415-502-8453
| |
Collapse
|
10
|
McClain KM, Moore SC, Sampson JN, Henderson TR, Gebauer SK, Newman JW, Ross S, Pedersen TL, Baer DJ, Zanetti KA. Preanalytical Sample Handling Conditions and Their Effects on the Human Serum Metabolome in Epidemiologic Studies. Am J Epidemiol 2021; 190:459-467. [PMID: 32959873 DOI: 10.1093/aje/kwaa202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Many epidemiologic studies use metabolomics for discovery-based research. The degree to which sample handling may influence findings, however, is poorly understood. In 2016, serum samples from 13 volunteers from the US Department of Agriculture's Beltsville Human Nutrition Research Center were subjected to different clotting (30 minutes/120 minutes) and refrigeration (0 minutes/24 hours) conditions, as well as different numbers (0/1/4) and temperatures (ice/refrigerator/room temperature) of thaws. The median absolute percent difference (APD) between metabolite levels and correlations between levels across conditions were estimated for 628 metabolites. The potential for handling artifacts to induce false-positive associations was estimated using variable hypothetical scenarios in which 1%-100% of case samples had different handling than control samples. All handling conditions influenced metabolite levels. Across metabolites, the median APD when extending clotting time was 9.08%. When increasing the number of thaws from 0 to 4, the median APD was 10.05% for ice and 5.54% for room temperature. Metabolite levels were correlated highly across conditions (all r's ≥ 0.84), indicating that relative ranks were preserved. However, if handling varied even modestly by case status, our hypotheticals showed that results can be biased and can result in false-positive findings. Sample handling affects levels of metabolites, and special care should be taken to minimize effects. Shorter room-temperature thaws should be preferred over longer ice thaws, and handling should be meticulously matched by case status.
Collapse
|
11
|
Borkowski K, Newman JW, Aghaeepour N, Mayo JA, Blazenović I, Fiehn O, Stevenson DK, Shaw GM, Carmichael SL. Mid-gestation serum lipidomic profile associations with spontaneous preterm birth are influenced by body mass index. PLoS One 2020; 15:e0239115. [PMID: 33201881 PMCID: PMC7671555 DOI: 10.1371/journal.pone.0239115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/31/2020] [Indexed: 01/11/2023] Open
Abstract
Spontaneous preterm birth (sPTB) is a major cause of infant morbidity and mortality. While metabolic changes leading to preterm birth are unknown, several factors including dyslipidemia and inflammation have been implicated and paradoxically both low (<18.5 kg/m2) and high (>30 kg/m2) body mass indices (BMIs) are risk factors for this condition. The objective of the study was to identify BMI-associated metabolic perturbations and potential mid-gestation serum biomarkers of preterm birth in a cohort of underweight, normal weight and obese women experiencing either sPTB or full-term deliveries (n = 102; n = 17/group). For this purpose, we combined untargeted metabolomics and lipidomics with targeted metabolic profiling of major regulators of inflammation and metabolism, including oxylipins, endocannabinoids, bile acids and ceramides. Women who were obese and had sPTB showed elevated oxidative stress and dyslipidemia characterized by elevated serum free fatty acids. Women who were underweight-associated sPTB also showed evidence of dyslipidemia characterized by elevated phospholipids, unsaturated triglycerides, sphingomyelins, cholesteryl esters and long-chain acylcarnitines. In normal weight women experiencing sPTB, the relative abundance of 14(15)-epoxyeicosatrienoic acid and 14,15-dihydroxyeicosatrienoic acids to other regioisomers were altered at mid-pregnancy. This phenomenon is not yet associated with any biological process, but may be linked to estrogen metabolism. These changes were differentially modulated across BMI groups. In conclusion, using metabolomics we observed distinct BMI-dependent metabolic manifestations among women who had sPTB. These observations suggest the potential to predict sPTB mid-gestation using a new set of metabolomic markers and BMI stratification. This study opens the door to further investigate the role of cytochrome P450/epoxide hydrolase metabolism in sPTB.
Collapse
Affiliation(s)
- Kamil Borkowski
- West Coast Metabolomic Center, Genome Center, University of California-Davis, Davis, CA, United States of America
- * E-mail:
| | - John W. Newman
- West Coast Metabolomic Center, Genome Center, University of California-Davis, Davis, CA, United States of America
- United States Department of Agriculture-Agriculture Research Service-Western Human Nutrition Research Center, Davis, CA, United States of America
- Department of Nutrition, University of California-Davis, Davis, CA, United States of America
| | - Nima Aghaeepour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Biomedical Data Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Jonathan A. Mayo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Ivana Blazenović
- West Coast Metabolomic Center, Genome Center, University of California-Davis, Davis, CA, United States of America
| | - Oliver Fiehn
- West Coast Metabolomic Center, Genome Center, University of California-Davis, Davis, CA, United States of America
| | - David K. Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Suzan L. Carmichael
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
12
|
La Frano MR, Brito A, Johnson CM, Wilhelmson B, Gannon B, Fanter RK, Pedersen TL, Tanumihardjo SA, Newman JW. Metabolomics Reveals Altered Hepatic Bile Acids, Gut Microbiome Metabolites, and Cell Membrane Lipids Associated with Marginal Vitamin A Deficiency in a Mongolian Gerbil Model. Mol Nutr Food Res 2020; 64:e1901319. [PMID: 32453876 DOI: 10.1002/mnfr.201901319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/19/2020] [Indexed: 12/17/2022]
Abstract
SCOPE This study is designed to provide a broad evaluation of the impacts of vitamin A (VA) deficiency on hepatic metabolism in a gerbil model. METHODS AND RESULTS After 28 days of VA depletion, male Mongolian gerbils (Meriones unguiculatus) are randomly assigned to experimental diets for 28 days. Groups are fed a white-maize-based diet with ≈50 µL cottonseed oil vehicle either alone (VA-, n = 10) or containing 40 µg retinyl acetate (VA+, n = 10) for 28 days. Liver retinol is measured by high-performance liquid chromatography. Primary metabolomics, aminomics, lipidomics, bile acids, oxylipins, ceramides, and endocannabinoids are analyzed in post-mortem liver samples by liquid chromatography-mass spectrometry. RESULTS Liver retinol is lower (p < 0.001) in the VA- versus VA+ group, with concentrations indicating marginal VA deficiency. A total of 300 metabolites are identified. Marginal VA deficiency is associated with lower bile acids, trimethylamine N-oxide, and a variety of acylcarnitines, phospholipids and sphingomyelins (p < 0.05). Components of DNA, including deoxyguanosine, cytidine, and N-carbomoyl-beta-alanine (p < 0.05), are differentially altered. CONCLUSIONS Hepatic metabolomics in a marginally VA-deficient gerbil model revealed alterations in markers of the gut microbiome, fatty acid and nucleotide metabolism, and cellular structure and signaling.
Collapse
Affiliation(s)
- Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.,Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.,West Coast Metabolomics Center, University of California, Davis, CA, USA.,Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Luxembourg Institute of Health, Department of Population Health, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen, 1445, Luxembourg
| | - Catherine M Johnson
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Baylee Wilhelmson
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Bryan Gannon
- University of Wisconsin-Madison, Department of Nutritional Sciences, Madison, WI, USA.,Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Rob K Fanter
- College of Agriculture, Food and Environmental Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Theresa L Pedersen
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Sherry A Tanumihardjo
- University of Wisconsin-Madison, Department of Nutritional Sciences, Madison, WI, USA
| | - John W Newman
- West Coast Metabolomics Center, University of California, Davis, CA, USA.,Department of Nutrition, University of California Davis, Davis, CA, USA.,Obesity and Metabolism Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| |
Collapse
|
13
|
Ouidir M, Zeng X, Workalemahu T, Shrestha D, Grantz KL, Mendola P, Zhang C, Tekola-Ayele F. Early pregnancy dyslipidemia is associated with placental DNA methylation at loci relevant for cardiometabolic diseases. Epigenomics 2020; 12:921-934. [PMID: 32677467 PMCID: PMC7466909 DOI: 10.2217/epi-2019-0293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Aim: To identify placental DNA methylation changes that are associated with early pregnancy maternal dyslipidemia. Materials & methods: We analyzed placental genome-wide DNA methylation (n = 262). Genes annotating differentially methylated CpGs were evaluated for gene expression in placenta (n = 64). Results: We found 11 novel significant differentially methylated CpGs associated with high total cholesterol, low-density lipoprotein cholesterol and triglycerides, and low high-density lipoprotein cholesterol. High triglycerides were associated with decreased methylation of cg02785814 (ALX4) and decreased expression of ALX4 in placenta. Genes annotating the differentially methylated CpGs play key roles in lipid metabolism and were enriched in dyslipidemia pathways. Functional annotation found cis-methylation quantitative trait loci for genetic loci in ALX4 and EXT2. Conclusion: Our findings lend novel insights into potential placental epigenetic mechanisms linked with maternal dyslipidemia. Trial Registration: ClinicalTrials.gov, NCT00912132.
Collapse
Affiliation(s)
- Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Xuehuo Zeng
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Tsegaselassie Workalemahu
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Deepika Shrestha
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Katherine L. Grantz
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Pauline Mendola
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Cuilin Zhang
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| |
Collapse
|
14
|
Bi H, Guo Z, Jia X, Liu H, Ma L, Xue L. The key points in the pre-analytical procedures of blood and urine samples in metabolomics studies. Metabolomics 2020; 16:68. [PMID: 32451742 DOI: 10.1007/s11306-020-01666-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/14/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Metabolomics provides measurement of numerous metabolites in human samples, which can be a useful tool in clinical research. Blood and urine are regarded as preferred subjects of study because of their minimally invasive collection and simple preprocessing methods. Adhering to standard operating procedures is an essential factor in ensuring excellent sample quality and reliable results. AIM OF REVIEW In this review, we summarize the studies about the impacts of various preprocessing factors on metabolomics studies involving clinical blood and urine samples in order to provide guidance for sample collection and preprocessing. KEY SCIENTIFIC CONCEPTS OF REVIEW Clinical information is important for sample grouping and data analysis which deserves attention before sample collection. Plasma and serum as well as urine samples are appropriate for metabolomics analysis. Collection tubes, hemolysis, delay at room temperature, and freeze-thaw cycles may affect metabolic profiles of blood samples. Collection time, time between sampling and examination, contamination, normalization strategies, and storage conditions may alter analysis results of urine samples. Taking these collection and preprocessing factors into account, this review provides suggestions of standard sample preprocessing.
Collapse
Affiliation(s)
- Hai Bi
- Department of Urology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, People's Republic of China
| | - Zhengyang Guo
- Medical Research Center, Peking University Third Hospital, Haidian District, 49 Huayuan North Road, Beijing, People's Republic of China
| | - Xiao Jia
- Medical Research Center, Peking University Third Hospital, Haidian District, 49 Huayuan North Road, Beijing, People's Republic of China
- Biobank, Peking University Third Hospital, Beijing, People's Republic of China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, People's Republic of China.
| | - Lixiang Xue
- Medical Research Center, Peking University Third Hospital, Haidian District, 49 Huayuan North Road, Beijing, People's Republic of China.
- Biobank, Peking University Third Hospital, Beijing, People's Republic of China.
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, People's Republic of China.
| |
Collapse
|
15
|
Rund KM, Nolte F, Doricic J, Greite R, Schott S, Lichtinghagen R, Gueler F, Schebb NH. Clinical blood sampling for oxylipin analysis - effect of storage and pneumatic tube transport of blood on free and total oxylipin profile in human plasma and serum. Analyst 2020; 145:2378-2388. [PMID: 32037406 DOI: 10.1039/c9an01880h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Quantitative analysis of oxylipins in blood samples is of increasing interest in clinical studies. However, storage after sampling and transport of blood might induce artificial changes in the apparent oxylipin profile due to ex vivo formation/degradation by autoxidation or enzymatic activity. In the present study we investigated the stability of free (i.e. non-esterified) and total oxylipins in EDTA-plasma and serum generated under clinical conditions assessing delays in sample processing and automated transportation: Free cytochrome P450 monooxygenase and 5-lipoxygenase (LOX) formed oxylipins as well as autoxidation products were marginally affected by storage of whole blood up to 4 h at 4 °C, while total (i.e. the sum of free and esterified) levels of these oxylipins were stable up to 24 h and following transport. Cyclooxygenase (COX) products (TxB2, 12-HHT) and 12-LOX derived hydroxy-fatty acids were prone to storage and transport induced changes due to platelet activation. Total oxylipin patterns were generally more stable than the concentration of free oxylipins. In serum, coagulation induced higher levels of COX and 12-LOX products showing a high inter-individual variability. Overall, our results indicate that total EDTA-plasma oxylipins are the most stable blood oxylipin marker for clinical samples. Here, storage of blood before further processing is acceptable for a period up to 24 hours at 4 °C. However, levels of platelet derived oxylipins should be interpreted with caution regarding potential ex vivo formation.
Collapse
Affiliation(s)
- Katharina M Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Long NP, Nghi TD, Kang YP, Anh NH, Kim HM, Park SK, Kwon SW. Toward a Standardized Strategy of Clinical Metabolomics for the Advancement of Precision Medicine. Metabolites 2020; 10:E51. [PMID: 32013105 PMCID: PMC7074059 DOI: 10.3390/metabo10020051] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the tremendous success, pitfalls have been observed in every step of a clinical metabolomics workflow, which impedes the internal validity of the study. Furthermore, the demand for logistics, instrumentations, and computational resources for metabolic phenotyping studies has far exceeded our expectations. In this conceptual review, we will cover inclusive barriers of a metabolomics-based clinical study and suggest potential solutions in the hope of enhancing study robustness, usability, and transferability. The importance of quality assurance and quality control procedures is discussed, followed by a practical rule containing five phases, including two additional "pre-pre-" and "post-post-" analytical steps. Besides, we will elucidate the potential involvement of machine learning and demonstrate that the need for automated data mining algorithms to improve the quality of future research is undeniable. Consequently, we propose a comprehensive metabolomics framework, along with an appropriate checklist refined from current guidelines and our previously published assessment, in the attempt to accurately translate achievements in metabolomics into clinical and epidemiological research. Furthermore, the integration of multifaceted multi-omics approaches with metabolomics as the pillar member is in urgent need. When combining with other social or nutritional factors, we can gather complete omics profiles for a particular disease. Our discussion reflects the current obstacles and potential solutions toward the progressing trend of utilizing metabolomics in clinical research to create the next-generation healthcare system.
Collapse
Affiliation(s)
- Nguyen Phuoc Long
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (N.P.L.); (N.H.A.); (H.M.K.)
| | - Tran Diem Nghi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea; (T.D.N.); (S.K.P.)
| | - Yun Pyo Kang
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (N.P.L.); (N.H.A.); (H.M.K.)
| | - Hyung Min Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (N.P.L.); (N.H.A.); (H.M.K.)
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea; (T.D.N.); (S.K.P.)
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (N.P.L.); (N.H.A.); (H.M.K.)
| |
Collapse
|
17
|
Pezzatti J, Boccard J, Codesido S, Gagnebin Y, Joshi A, Picard D, González-Ruiz V, Rudaz S. Implementation of liquid chromatography-high resolution mass spectrometry methods for untargeted metabolomic analyses of biological samples: A tutorial. Anal Chim Acta 2020; 1105:28-44. [PMID: 32138924 DOI: 10.1016/j.aca.2019.12.062] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 12/23/2022]
Abstract
Untargeted metabolomics is now widely recognized as a useful tool for exploring metabolic changes taking place in biological systems under different conditions. By its nature, this is a highly interdisciplinary field of research, and mastering all of the steps comprised in the pipeline can be a challenging task, especially for those researchers new to the topic. In this tutorial, we aim to provide an overview of the most widely adopted methods of performing LC-HRMS-based untargeted metabolomics of biological samples. A detailed protocol is provided in the Supplementary Information for rapidly implementing a basic screening workflow in a laboratory setting. This tutorial covers experimental design, sample preparation and analysis, signal processing and data treatment, and, finally, data analysis and its biological interpretation. Each section is accompanied by up-to-date literature to guide readers through the preparation and optimization of such a workflow, as well as practical information for avoiding or fixing some of the most frequently encountered pitfalls.
Collapse
Affiliation(s)
- Julian Pezzatti
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Julien Boccard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Santiago Codesido
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Yoric Gagnebin
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Abhinav Joshi
- Department of Cell Biology, Faculty of Science, University of Geneva, 1211, Geneva, Switzerland
| | - Didier Picard
- Department of Cell Biology, Faculty of Science, University of Geneva, 1211, Geneva, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland.
| |
Collapse
|
18
|
Ivanisevic J, Want EJ. From Samples to Insights into Metabolism: Uncovering Biologically Relevant Information in LC-HRMS Metabolomics Data. Metabolites 2019; 9:metabo9120308. [PMID: 31861212 PMCID: PMC6950334 DOI: 10.3390/metabo9120308] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022] Open
Abstract
Untargeted metabolomics (including lipidomics) is a holistic approach to biomarker discovery and mechanistic insights into disease onset and progression, and response to intervention. Each step of the analytical and statistical pipeline is crucial for the generation of high-quality, robust data. Metabolite identification remains the bottleneck in these studies; therefore, confidence in the data produced is paramount in order to maximize the biological output. Here, we outline the key steps of the metabolomics workflow and provide details on important parameters and considerations. Studies should be designed carefully to ensure appropriate statistical power and adequate controls. Subsequent sample handling and preparation should avoid the introduction of bias, which can significantly affect downstream data interpretation. It is not possible to cover the entire metabolome with a single platform; therefore, the analytical platform should reflect the biological sample under investigation and the question(s) under consideration. The large, complex datasets produced need to be pre-processed in order to extract meaningful information. Finally, the most time-consuming steps are metabolite identification, as well as metabolic pathway and network analysis. Here we discuss some widely used tools and the pitfalls of each step of the workflow, with the ultimate aim of guiding the reader towards the most efficient pipeline for their metabolomics studies.
Collapse
Affiliation(s)
- Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 19, 1005 Lausanne, Switzerland
- Correspondence: (J.I.); (E.J.W.)
| | - Elizabeth J. Want
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
- Correspondence: (J.I.); (E.J.W.)
| |
Collapse
|
19
|
Gladine C, Ostermann AI, Newman JW, Schebb NH. MS-based targeted metabolomics of eicosanoids and other oxylipins: Analytical and inter-individual variabilities. Free Radic Biol Med 2019; 144:72-89. [PMID: 31085232 DOI: 10.1016/j.freeradbiomed.2019.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Oxylipins, including the well-known eicosanoids, are potent lipid mediators involved in numerous physiological and pathological processes. Therefore, their quantitative profiling has gained a lot of attention during the last years notably in the active field of health biomarker discovery. Oxylipins include hundreds of structurally and stereochemically distinct lipid species which today are most commonly analyzed by (ultra) high performance liquid chromatography-mass spectrometry based ((U)HPLC-MS) methods. To maximize the utility of oxylipin profiling in clinical research, it is crucial to understand and assess the factors contributing to the analytical and biological variability of oxylipin profiles in humans. In this review, these factors and their impacts are summarized and discussed, providing a framework for recommendations expected to enhance the interlaboratory comparability and biological interpretation of oxylipin profiling in clinical research.
Collapse
Affiliation(s)
- Cécile Gladine
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.
| | - Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| | - John W Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; University of California Davis, Department of Nutrition, Davis, CA, USA
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| |
Collapse
|
20
|
Handelman SK, Romero R, Tarca AL, Pacora P, Ingram B, Maymon E, Chaiworapongsa T, Hassan SS, Erez O. The plasma metabolome of women in early pregnancy differs from that of non-pregnant women. PLoS One 2019; 14:e0224682. [PMID: 31726468 PMCID: PMC6855901 DOI: 10.1371/journal.pone.0224682] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In comparison to the non-pregnant state, the first trimester of pregnancy is characterized by systemic adaptation of the mother. The extent to which these adaptive processes are reflected in the maternal blood metabolome is not well characterized. OBJECTIVE To determine the differences between the plasma metabolome of non-pregnant and pregnant women before 16 weeks gestation. STUDY DESIGN This study included plasma samples from 21 non-pregnant women and 50 women with a normal pregnancy (8-16 weeks of gestation). Combined measurements by ultrahigh performance liquid chromatography/tandem mass spectrometry and by gas chromatography/mass spectrometry generated molecular abundance measurements for each sample. Molecular species detected in at least 10 samples were included in the analysis. Differential abundance was inferred based on false discovery adjusted p-values (FDR) from Mann-Whitney-Wilcoxon U tests <0.1 and a minimum median abundance ratio (fold change) of 1.5. Alternatively, metabolic data were quantile normalized to remove sample-to-sample differences in the overall metabolite abundance (adjusted analysis). RESULTS Overall, 637 small molecules met the inclusion criteria and were tested for association with pregnancy; 44% (281/637) of small molecules had significantly different abundance, of which 81% (229/281) were less abundant in pregnant than in non-pregnant women. Eight percent (14/169) of the metabolites that remained significant in the adjusted analysis also changed as a function of gestational age. A pathway analysis revealed enrichment in steroid metabolites related to sex hormones, caffeine metabolites, lysolipids, dipeptides, and polypeptide bradykinin derivatives (all, FDR < 0.1). CONCLUSIONS This high-throughput mass spectrometry study identified: 1) differences between pregnant vs. non-pregnant women in the abundance of 44% of the profiled plasma metabolites, including known and novel molecules and pathways; and 2) specific metabolites that changed with gestational age.
Collapse
Affiliation(s)
- Samuel K. Handelman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Detroit Medical Center, Detroit, Michigan, United States of America
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Brian Ingram
- Metabolon Inc., Raleigh-Durham, North Carolina, United States of America
| | - Eli Maymon
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Maternity Department "D," Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|