1
|
Fotakis C, Andreou V, Christodouleas DC, Zervou M. The Metabolic and Antioxidant Activity Profiles of Aged Greek Grape Marc Spirits. Foods 2024; 13:1664. [PMID: 38890893 PMCID: PMC11172063 DOI: 10.3390/foods13111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
In the last decade, "expressions" of grape marc spirits aged in wooden barrels of characteristic amber color and complex sensory attributes have been introduced. Yet studies on constituents migrating from the barrel to the beverage are scarce, and their metabolic profile remains unexplored. Furthermore, the literature on the assessment of their antioxidant activity is limited. NMR metabolomics and spectrophotometry have been implemented in 38 samples to elucidate the impact of the aging procedure on the metabolites' composition and establish whether these beverages exhibit antioxidant activity. Provenance was related to fusel alcohols, esters, acetaldehyde, methanol, saccharides, and 2-phenylethanol, while ethyl acetate and ethyl lactate contributed to discriminating samples of the same winery. Identified metabolites such as vanillin, syringaldehyde, and sinapaldehyde were related to the aging procedure. The maturation in the barrel was also associated with an increase in xylose, glucose, fructose, and arabinose. The antioxidant potential of the aged Greek grape marc spirits resulting from their maturation in oak barrels was highlighted. The metabolic profiling and antioxidant potential of aged Greek grape marc spirits were assessed for the first time. Finally, the enrichment of the aromatic region was noted with the presence of metabolites with a furanic and phenolic ring derived, respectively, from the polysaccharides' degradation or the thermal decomposition of lignin.
Collapse
Affiliation(s)
- Charalambos Fotakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (C.F.); (V.A.)
| | - Vasiliki Andreou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (C.F.); (V.A.)
| | | | - Maria Zervou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (C.F.); (V.A.)
| |
Collapse
|
2
|
Balcázar-Zumaeta CR, Castro-Alayo EM, Cayo-Colca IS, Idrogo-Vásquez G, Muñoz-Astecker LD. Metabolomics during the spontaneous fermentation in cocoa (Theobroma cacao L.): An exploraty review. Food Res Int 2023; 163:112190. [PMID: 36596129 DOI: 10.1016/j.foodres.2022.112190] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Spontaneous fermentation is a process that depends on substrates' physical characteristics, crop variety, and postharvest practices; it induces variations in the metabolites that are responsible for the taste, aroma, and quality. Metabolomics makes it possible to detect key metabolites using chemometrics and makes it possible to establish patterns or identify biomarker behaviors under certain conditions at a given time. Therefore, sensitive and highly efficient analytical techniques allow for studying the metabolomic fingerprint changes during fermentation; which identify and quantify metabolites related to taste and aroma formation of an adequate processing time. This review shows that studying metabolomics in spontaneous fermentation permits the characterization of spontaneous fermentation in different stages. Also, it demonstrates the possibility of modulating the quality of cocoa by improving the spontaneous fermentation time (because of volatile aromatic compounds formation), thus standardizing the process to obtain attributes and quality that will later impact the chocolate quality.
Collapse
Affiliation(s)
- César R Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru.
| | - Efraín M Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru.
| | - Ilse S Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru.
| | - Guillermo Idrogo-Vásquez
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru.
| | - Lucas D Muñoz-Astecker
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru.
| |
Collapse
|
3
|
Qi C, Jin Y, Cheng S, Di L, Wang X, Zhang M, Zhang L, Li XL, Han Y, Ma Q, Min JZ. A novel UHPLC-MS/MS method for the determination of four α-dicarbonyl compounds in wine and dynamic monitoring in human urine after drinking. Food Res Int 2023; 163:112170. [PMID: 36596116 DOI: 10.1016/j.foodres.2022.112170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
α-dicarbonyl compounds (α-DCs) serve as potential biomarkers for oxidative stress-related diseases but are difficult to detect.To study the metabolism of carbonyl compounds, we developed a new mass spectrometry probe, 3-benzyl-2-oxo-4λ3-thiazolidine-4-carbohydrazide (BOTC), containing hydrazyl groups for the targeted detection of carbonyl functional groups.In a novel approach, we used BOTC pre-column derivatization with ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to simultaneously detect four kinds of α-DCs in red wine as well as in urine after drinking. The α-DCs were completely separated (R2 ≥ 0.9995), detection was sensitive (detection limit was 12.5-50 fmol), consistent (intraday and interday precision was 0.1-5.7 %), and efficient (average recoveries were 103.3-110.2 %). The method was applied to the analysis of α-DCs in different wines and the dynamic monitoring of transit and excretion in vivo after drinking. Our novel method provides a new strategy for the detection of α-dicarbonyl compounds in red wine and dicarbonyl compounds produced in oxidative stress-related diseases.
Collapse
Affiliation(s)
- Chao Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yueying Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Shengyu Cheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lei Di
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xin Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Minghui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lingli Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xi-Ling Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yu Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Qingkun Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
4
|
|
5
|
LeVatte M, Keshteli AH, Zarei P, Wishart DS. Applications of Metabolomics to Precision Nutrition. Lifestyle Genom 2021; 15:1-9. [PMID: 34518463 DOI: 10.1159/000518489] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND For thousands of years, disabilities due to nutrient deficiencies have plagued humanity. Rickets, scurvy, anemia, stunted growth, blindness, and mental handicaps due to nutrient deficiencies affected up to 1/10 of the world's population prior to 1900. The discovery of essential amino acids, vitamins, and minerals, in the early 1900s, led to a fundamental change in our understanding of food and a revolution in human health. Widespread vitamin and mineral supplementation, the development of recommended dietary allowances, and the implementation of food labeling and testing along with significant improvements in food production and food quality have meant that nutrient-related disorders have almost vanished in the developed world. The success of nutritional science in preventing disease at a population-wide level is one of the great scientific triumphs of the 20th century. The challenge for nutritional science in the 21st century is to understand how to use nutrients and other food constituents to enhance human health or prevent disease at a more personal level. This is the primary goal of precision nutrition. SUMMARY Precision nutrition is an emerging branch of nutrition science that aims to use modern omics technologies (genomics, proteomics, and metabolomics) to assess an individual's response to specific foods or dietary patterns and thereby determine the most effective diet or lifestyle interventions to prevent or treat specific diseases in that individual. Metabolomics is vital to nearly every aspect of precision nutrition. It can be used to comprehensively characterize the thousands of chemicals in foods, to identify food byproducts in human biofluids or tissues, to characterize nutrient deficiencies or excesses, to monitor biochemical responses to dietary interventions, to track long-term or short-term dietary habits, and to guide the development of nutritional therapies. In this review, we will describe how metabolomics has been used to advance the field of precision nutrition by providing some notable examples or use cases. First, we will describe how metabolomics helped launch the field of precision nutrition through the diagnosis and dietary therapy of individuals with inborn errors of metabolism. Next, we will describe how metabolomics is being used to comprehensively characterize the full chemical complexity of many key foods, and how this is revealing much more about nutrients than ever imagined. Third, we will describe how metabolomics is being used to identify food consumption biomarkers and how this opens the door to a more objective and quantitative assessments of an individual's diet and their response to certain foods. Finally, we will describe how metabolomics is being coupled with other omics technologies to develop custom diets and lifestyle interventions that are leading to positive health benefits. Key Message: Metabolomics is vital to the advancement of nutritional science and in making the dream of precision nutrition a reality.
Collapse
Affiliation(s)
- Marcia LeVatte
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Parvin Zarei
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Computing Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Tabago MKAG, Calingacion MN, Garcia J. Recent advances in NMR-based metabolomics of alcoholic beverages. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 2:100009. [PMID: 35415632 PMCID: PMC8991939 DOI: 10.1016/j.fochms.2020.100009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/30/2020] [Accepted: 12/27/2020] [Indexed: 01/14/2023]
Abstract
Alcoholic beverages have a complex chemistry that can be influenced by their alcoholic content, origin, fermentation process, additives, and contaminants. The complex composition of these beverages leave them susceptible to fraud, potentially compromising their authenticity, quality, and market value, thus increasing risks to consumers' health. In recent years, intensive studies have been carried out on alcoholic beverages using different analytical techniques to evaluate the authenticity, variety, age, and fermentation processes that were used. Among these techniques, NMR-based metabolomics holds promise in profiling the chemistry of alcoholic beverages, especially in Asia where metabolomics studies on alcoholic beverages remain limited.
Collapse
Affiliation(s)
- Maria Krizel Anne G. Tabago
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Malate, Manila, Metro Manila 1004, Philippines
| | - Mariafe N. Calingacion
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Malate, Manila, Metro Manila 1004, Philippines
| | - Joel Garcia
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Malate, Manila, Metro Manila 1004, Philippines
| |
Collapse
|
7
|
Xu X, Li T, Ji Y, Jiang X, Shi X, Wang B. Origin, Succession, and Control of Biotoxin in Wine. Front Microbiol 2021; 12:703391. [PMID: 34367103 PMCID: PMC8339702 DOI: 10.3389/fmicb.2021.703391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Wine is a worldwide alcoholic beverage with antioxidant active substances and complex flavors. Moderate drinking of wine has been proven to be beneficial to health. However, wine has some negative components, such as residual pesticides, heavy metals, and biotoxins. Of these, biotoxins from microorganisms were characterized as the most important toxins in wine. Wine fermentation mainly involves alcoholic fermentation, malolactic fermentation, and aging, which endue wine with complex flavors and even produce some undesirable metabolites. These metabolites cause potential safety risks that are not thoroughly understood. This review aimed to investigate the origin, evolution, and control technology of undesirable metabolites (e.g., ochratoxin A, ethyl carbamate, and biogenic amines) in wine. It also highlighted current wine industry practices of minimizing the number of biotoxins in wine.
Collapse
Affiliation(s)
| | | | | | | | - Xuewei Shi
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Bin Wang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
8
|
Theodoridis G, Pechlivanis A, Thomaidis NS, Spyros A, Georgiou CA, Albanis T, Skoufos I, Kalogiannis S, Tsangaris GT, Stasinakis AS, Konstantinou I, Triantafyllidis A, Gkagkavouzis K, Kritikou AS, Dasenaki ME, Gika H, Virgiliou C, Kodra D, Nenadis N, Sampsonidis I, Arsenos G, Halabalaki M, Mikros E. FoodOmicsGR_RI. A Consortium for Comprehensive Molecular Characterisation of Food Products. Metabolites 2021; 11:74. [PMID: 33513809 PMCID: PMC7911248 DOI: 10.3390/metabo11020074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The national infrastructure FoodOmicsGR_RI coordinates research efforts from eight Greek Universities and Research Centers in a network aiming to support research and development (R&D) in the agri-food sector. The goals of FoodOmicsGR_RI are the comprehensive in-depth characterization of foods using cutting-edge omics technologies and the support of dietary/nutrition studies. The network combines strong omics expertise with expert field/application scientists (food/nutrition sciences, plant protection/plant growth, animal husbandry, apiculture and 10 other fields). Human resources involve more than 60 staff scientists and more than 30 recruits. State-of-the-art technologies and instrumentation is available for the comprehensive mapping of the food composition and available genetic resources, the assessment of the distinct value of foods, and the effect of nutritional intervention on the metabolic profile of biological samples of consumers and animal models. The consortium has the know-how and expertise that covers the breadth of the Greek agri-food sector. Metabolomics teams have developed and implemented a variety of methods for profiling and quantitative analysis. The implementation plan includes the following research axes: development of a detailed database of Greek food constituents; exploitation of "omics" technologies to assess domestic agricultural biodiversity aiding authenticity-traceability control/certification of geographical/genetic origin; highlighting unique characteristics of Greek products with an emphasis on quality, sustainability and food safety; assessment of diet's effect on health and well-being; creating added value from agri-food waste. FoodOmicsGR_RI develops new tools to evaluate the nutritional value of Greek foods, study the role of traditional foods and Greek functional foods in the prevention of chronic diseases and support health claims of Greek traditional products. FoodOmicsGR_RI provides access to state-of-the-art facilities, unique, well-characterised sample sets, obtained from precision/experimental farming/breeding (milk, honey, meat, olive oil and so forth) along with more than 20 complementary scientific disciplines. FoodOmicsGR_RI is open for collaboration with national and international stakeholders.
Collapse
Affiliation(s)
- Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Alexandros Pechlivanis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Apostolos Spyros
- Department of Chemistry, University of Crete, Voutes Campus, 71003 Heraklion, Greece;
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Triantafyllos Albanis
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.A.); (I.K.)
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece;
| | - Stavros Kalogiannis
- Department of Nutritional Sciences & Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece; (S.K.); (I.S.)
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | | | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.A.); (I.K.)
| | - Alexander Triantafyllidis
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Gkagkavouzis
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia S. Kritikou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Marilena E. Dasenaki
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Helen Gika
- Department of Medicine, Laboratory of Forensic Medicine & Toxicology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Christina Virgiliou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Dritan Kodra
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences & Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece; (S.K.); (I.S.)
| | - Georgios Arsenos
- Department of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria Halabalaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (M.H.); (E.M.)
| | - Emmanuel Mikros
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (M.H.); (E.M.)
| | | |
Collapse
|
9
|
Sharma A, Noda M, Sugiyama M, Kumar B, Kaur B. Application of Pediococcus acidilactici BD16 ( alaD +) expressing L-alanine dehydrogenase enzyme as a starter culture candidate for secondary wine fermentation. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1995496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Anshula Sharma
- Systems Biology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab, India
| | - Masafumi Noda
- Department of Molecular Microbiology and Biotechnology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Masanori Sugiyama
- Department of Molecular Microbiology and Biotechnology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Balvir Kumar
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Baljinder Kaur
- Systems Biology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
10
|
Promoting Human Nutrition and Health through Plant Metabolomics: Current Status and Challenges. BIOLOGY 2020; 10:biology10010020. [PMID: 33396370 PMCID: PMC7823625 DOI: 10.3390/biology10010020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
Simple Summary This review summarizes the status, applications, and challenges of plant metabolomics in the context of crop breeding, food quality and safety, and human nutrition and health. It also highlights the importance of plant metabolomics in elucidating biochemical and genetic bases of traits associated with nutritive and healthy beneficial foods and other plant products to secure food supply, to ensure food quality, to protect humans from malnutrition and other diseases. Meanwhile, this review calls for comprehensive collaborations to accelerate relevant researches and applications in the context of human nutrition and health. Abstract Plant metabolomics plays important roles in both basic and applied studies regarding all aspects of plant development and stress responses. With the improvement of living standards, people need high quality and safe food supplies. Thus, understanding the pathways involved in the biosynthesis of nutritionally and healthily associated metabolites in plants and the responses to plant-derived biohazards in humans is of equal importance to meet people’s needs. For each, metabolomics has a vital role to play, which is discussed in detail in this review. In addition, the core elements of plant metabolomics are highlighted, researches on metabolomics-based crop improvement for nutrition and safety are summarized, metabolomics studies on plant natural products including traditional Chinese medicine (TCM) for health promotion are briefly presented. Challenges are discussed and future perspectives of metabolomics as one of the most important tools to promote human nutrition and health are proposed.
Collapse
|
11
|
Kalló G, Kunkli B, Győri Z, Szilvássy Z, Csősz É, Tőzsér J. Compounds with Antiviral, Anti-Inflammatory and Anticancer Activity Identified in Wine from Hungary's Tokaj Region via High Resolution Mass Spectrometry and Bioinformatics Analyses. Int J Mol Sci 2020; 21:E9547. [PMID: 33334025 PMCID: PMC7765363 DOI: 10.3390/ijms21249547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
(1) Background: Wine contains a variety of molecules with potential beneficial effects on human health. Our aim was to examine the wine components with high-resolution mass spectrometry including high-resolution tandem mass spectrometry in two wine types made from grapes with or without the fungus Botrytis cinerea, or "noble rot". (2) For LC-MS/MS analysis, 12 wine samples (7 without and 5 with noble rotting) from 4 different wineries were used and wine components were identified and quantified. (3) Results: 288 molecules were identified in the wines and the amount of 169 molecules was statistically significantly different between the two wine types. A database search was carried out to find the molecules, which were examined in functional studies so far, with high emphasis on molecules with antiviral, anti-inflammatory and anticancer activities. (4) Conclusions: A comprehensive functional dataset related to identified wine components is also provided highlighting the importance of components with potential health benefits.
Collapse
Affiliation(s)
- Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.K.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Balázs Kunkli
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Zoltán Győri
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 128, 4032 Debrecen, Hungary;
| | - Zoltán Szilvássy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.K.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.K.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
| |
Collapse
|
12
|
Arapitsas P, Ugliano M, Marangon M, Piombino P, Rolle L, Gerbi V, Versari A, Mattivi F. Use of Untargeted Liquid Chromatography-Mass Spectrometry Metabolome To Discriminate Italian Monovarietal Red Wines, Produced in Their Different Terroirs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13353-13366. [PMID: 32271564 PMCID: PMC7997580 DOI: 10.1021/acs.jafc.0c00879] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The aim of this project was to register, in a liquid chromatography-mass spectrometry-based untargeted single-batch analysis, the metabolome of 11 single-cultivar, single-vintage Italian red wines (Aglianico, Cannonau, Corvina, Montepulciano, Nebbiolo, Nerello, Primitivo, Raboso, Sagrantino, Sangiovese, and Teroldego) from 12 regions across Italy, each one produced in their terroirs under ad hoc legal frameworks to guarantee their quality and origin. The data provided indications regarding the similarity between the cultivars and highlighted a rich list of putative biomarkers of origin wines (pBOWs) characterizing each individual cultivar-terroir combination, where Primitivo, Teroldego, and Nebbiolo had the maximum number of unique pBOWs. The pBOWs included anthocyanins (Teroldego), flavanols (Aglianico, Sangiovese, Nerello, and Nebbiolo), amino acids and N-containing metabolites (Primitivo), hydroxycinnamates (Cannonau), and flavonols (Sangiovese). The raw data generated in this study are publicly available and, therefore, accessible and reusable as a baseline data set for future investigations.
Collapse
Affiliation(s)
- Panagiotis Arapitsas
- Department
of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Edmund Mach 1, 38010 San Michele all’Adige, Trentino, Italy
| | - Maurizio Ugliano
- Department
of Biotechnology, University of Verona, Cà Vignal 1, Strada le Grazie
15, 37134 Verona, Italy
| | - Matteo Marangon
- Department
of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’Università 16, 35020 Legnaro, Padua, Italy
| | - Paola Piombino
- Department
of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Viale Italia, 83100 Avellino, Italy
| | - Luca Rolle
- Department
of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| | - Vincenzo Gerbi
- Department
of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| | - Andrea Versari
- Department
of Agricultural and Food Sciences, University
of Bologna, Piazza Goidanich
60, 47521 Cesena, Forlì-Cesena, Italy
| | - Fulvio Mattivi
- Department
of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Edmund Mach 1, 38010 San Michele all’Adige, Trentino, Italy
- Department
of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Povo, Trentino, Italy
| |
Collapse
|
13
|
Polyphenols: Natural Antioxidants to Be Used as a Quality Tool in Wine Authenticity. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyphenols are a diverse group of compounds possessing various health-promoting properties that are of utmost importance for many wine sensory attributes. Apart from genetic and environmental parameters, the implementation of specific oenological practices as well as the subsequent storage conditions deeply affect the content and nature of the polyphenols present in wine. However, polyphenols are effectively employed in authenticity studies. Provision of authentic wines to the market has always been a prerequisite meaning that the declarations on the wine label should mirror the composition and provenance of this intriguing product. Nonetheless, multiple cases of intentional or unintentional wine mislabeling have been recorded alarming wine consumers who demand for strict controls safeguarding wine authenticity. The emergence of novel platforms employing instrumentation of exceptional selectivity and sensitivity along with the use of advanced chemometrics such as NMR (nuclear magnetic resonance)- and MS (mass spectrometry)-based metabolomics is considered as a powerful asset towards wine authentication.
Collapse
|