1
|
Ribeiro GDJG, Rei Yan SL, Palmisano G, Wrenger C. Plant Extracts as a Source of Natural Products with Potential Antimalarial Effects: An Update from 2018 to 2022. Pharmaceutics 2023; 15:1638. [PMID: 37376086 DOI: 10.3390/pharmaceutics15061638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
Malaria kills more than 500,000 people yearly, mainly affecting Africa and Southeast Asia. The disease is caused by the protozoan parasite from the genus Plasmodium, with Plasmodium vivax and Plasmodium falciparum being the main species that cause the disease in humans. Although substantial progress has been observed in malaria research in the last years, the threat of the spread of Plasmodium parasites persists. Artemisinin-resistant strains of this parasite have been reported mainly in Southeast Asia, highlighting the urgent need to develop more effective and safe antimalarial drugs. In this context, natural sources, mainly from flora, remain underexplored antimalarial spaces. The present mini-review explores this space focusing on plant extracts and some of their isolated natural products with at least in vitro antiplasmodial effects reported in the literature comprising the last five years (2018-2022).
Collapse
Affiliation(s)
- Giovane de Jesus Gomes Ribeiro
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Sun Liu Rei Yan
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
2
|
Progress and Impact of Latin American Natural Product Databases. Biomolecules 2022; 12:biom12091202. [PMID: 36139041 PMCID: PMC9496143 DOI: 10.3390/biom12091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products (NPs) are a rich source of structurally novel molecules, and the chemical space they encompass is far from being fully explored. Over history, NPs have represented a significant source of bioactive molecules and have served as a source of inspiration for developing many drugs on the market. On the other hand, computer-aided drug design (CADD) has contributed to drug discovery research, mitigating costs and time. In this sense, compound databases represent a fundamental element of CADD. This work reviews the progress toward developing compound databases of natural origin, and it surveys computational methods, emphasizing chemoinformatic approaches to profile natural product databases. Furthermore, it reviews the present state of the art in developing Latin American NP databases and their practical applications to the drug discovery area.
Collapse
|
3
|
Song Z, Tang G, Zhuang C, Wang Y, Wang M, Lv D, Lu G, Meng J, Xia M, Zhu Z, Chai Y, Yang J, Liu Y. Metabolomic profiling of cerebrospinal fluid reveals an early diagnostic model for central nervous system involvement in acute lymphoblastic leukaemia. Br J Haematol 2022; 198:994-1010. [PMID: 35708546 DOI: 10.1111/bjh.18307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022]
Abstract
The pathogenesis of central nervous system involvement (CNSI) in patients with acute lymphoblastic leukaemia (ALL) remains unclear and a robust biomarker of early diagnosis is missing. An untargeted cerebrospinal fluid (CSF) metabolomics analysis was performed to identify independent risk biomarkers that could diagnose CNSI at the early stage. Thirty-three significantly altered metabolites between ALL patients with and without CNSI were identified, and a CNSI evaluation score (CES) was constructed to predict the risk of CNSI based on three independent risk factors (8-hydroxyguanosine, l-phenylalanine and hypoxanthine). This predictive model could diagnose CNSI with positive prediction values of 95.9% and 85.6% in the training and validation sets respectively. Moreover, CES score increased with the elevated level of central nervous system (CNSI) involvement. In addition, we validated this model by tracking the changes in CES at different stages of CNSI, including before CNSI and during CNSI, and in remission after CNSI. The CES showed good ability to predict the progress of CNSI. Finally, we constructed a nomogram to predict the risk of CNSI in clinical practice, which performed well compared with observed probability. This unique CSF metabolomics study may help us understand the pathogenesis of CNSI, diagnose CNSI at the early stage, and sequentially achieve personalized precision treatment.
Collapse
Affiliation(s)
- Zhiqiang Song
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.,Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Gusheng Tang
- Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chunlin Zhuang
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang Wang
- Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Mian Wang
- Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Diya Lv
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Guihua Lu
- Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jie Meng
- Department of Laboratory Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Min Xia
- Department of Hematology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyu Zhu
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Yifeng Chai
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Jianmin Yang
- Institute of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yue Liu
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| |
Collapse
|
4
|
Cassago ALL, Souza FVD, Zocolo GJ, da Costa FB. Metabolomics as a tool to discriminate species of the Ananas genus and assist in taxonomic identification. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2021.104380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Gontijo DC, do Nascimento MFA, Rody HVS, Magalhães RA, Margalho LF, Brandão GC, de Oliveira AB. In vitro antiplasmodial activity, targeted LC-MS metabolite profiling, and identification of major natural products in the bioactive extracts of Palicourea and Psychotria species from the Amazonia and Atlantic Forest biomes, Brazil. Metabolomics 2021; 17:81. [PMID: 34480651 DOI: 10.1007/s11306-021-01833-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION A great variety of bioactive natural products has been reported for different Palicourea and Psychotria species (Rubiaceae). However, few of them as well as few of species of these botanical genera have been evaluated for antiplasmodial activity. OBJECTIVE To assess the antiplasmodial activity of 24 extracts from Palicourea and Psychotria genera, along with the targeted LC-MS metabolite profiling, as well as identification of the main metabolites in the bioactive extracts. METHODS Twenty four ethanol and acid-base extracts from Palicourea and Psychotria genera collected in the Amazonia and Atlantic Forest, Brazil, were evaluated against chloroquine-resistant Plasmodium falciparum W2 strain by PfLDH. The metabolite profiling and putative identification of metabolites from bioactive extracts were determined by LC-DAD-ESI-MS and LC-HRMS, respectively. RESULTS The ethanol extracts disclosed low antiplasmodial activity (% GI < 50%). High antiplasmodial effect was observed for the acid-base extracts from Psychotria apoda and Psychotria colorata with 100% inhibition of parasite growth inhibition. Fragment ions related to pyrrolidinoindoline alkaloids were observed by LC-DAD-ESI-MS mainly in the most bioactive extracts. The results of the in vitro screening associated with the LC-DAD-ESI-MS and LC-HRMSn data allowed to predict, for the first time, the pyrrolidinoindoline alkaloids as possible antiplasmodial representing, then, new potential natural antimalarial hits. In addition, other metabolite classes such as flavanones, lignans and chalcones were also putatively identified in the bioactive extracts of Psychotria apoda, Psychotria capitata, and Psychotria poeppigiana. CONCLUSION The present results point to Palicourea and Psychotria species as sources of new antimalarial hits.
Collapse
Affiliation(s)
- Douglas Costa Gontijo
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Maria Fernanda Alves do Nascimento
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Hugo Vianna Silva Rody
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Genética, Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Rodrigo Andrade Magalhães
- Departamento de Botânica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Geraldo Célio Brandão
- Escola de Farmácia, Universidade Federal de Ouro Preto, Morro Do Cruzeiro, s/n, Ouro Prêto, MG, 35400-000, Brazil
| | - Alaíde Braga de Oliveira
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
6
|
Cassago ALL, Artêncio MM, de Moura Engracia Giraldi J, Da Costa FB. Metabolomics as a marketing tool for geographical indication products: a literature review. Eur Food Res Technol 2021; 247:2143-2159. [PMID: 34149310 PMCID: PMC8204615 DOI: 10.1007/s00217-021-03782-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/30/2022]
Abstract
Geographical indication (GI) is used to identify a product's origin when its characteristics or quality are a result of geographical origin, which includes agricultural products and foodstuff. Metabolomics is an “omics” technique that can support product authentication by providing a chemical fingerprint of a biological system, such as plant and plant-derived products. The main purpose of this article is to verify possible contributions of metabolomic studies to the marketing field, mainly for certified regions, through an integrative review of the literature and maps produced by VOSviewer software. The results indicate that studies based on metabolomics approaches can relate specific food attributes to the region’s terroir and know-how. The evidence of this connection, marketing of GIs and metabolomics methods, is viewed as potential tool for marketing purposes (e.g., to assist communication of positive aspects and quality), and legal protection. In addition, our results provide a taxonomic categorization that can guide future marketing research involving metabolomics. Moreover, the results are also useful to government agencies to improve GIs registration systems and promotion strategies.
Collapse
Affiliation(s)
- Alvaro Luis Lamas Cassago
- Department of Pharmaceutical Sciences, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Av. do Café s/n, Ribeirão Preto, SP 14040-903 Brazil
| | - Mateus Manfrin Artêncio
- Department of Business Administration, University of São Paulo, School of Economics, Business Administration and Accounting of Ribeirão Preto, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14040-905 Brazil
| | - Janaina de Moura Engracia Giraldi
- Department of Business Administration, University of São Paulo, School of Economics, Business Administration and Accounting of Ribeirão Preto, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14040-905 Brazil
| | - Fernando Batista Da Costa
- Department of Pharmaceutical Sciences, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Av. do Café s/n, Ribeirão Preto, SP 14040-903 Brazil
| |
Collapse
|
7
|
Costa RPO, Lucena LF, Silva LMA, Zocolo GJ, Herrera-Acevedo C, Scotti L, Da-Costa FB, Ionov N, Poroikov V, Muratov EN, Scotti MT. The SistematX Web Portal of Natural Products: An Update. J Chem Inf Model 2021; 61:2516-2522. [PMID: 34014674 DOI: 10.1021/acs.jcim.1c00083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural products and their secondary metabolites are promising starting points for the development of drug prototypes and new drugs, as many current treatments for numerous diseases are directly or indirectly related to such compounds. State-of-the-art, curated, integrated, and frequently updated databases of secondary metabolites are thus highly relevant to drug discovery. The SistematX Web Portal, introduced in 2018, is undergoing development to address this need and documents crucial information about plant secondary metabolites, including the exact location of the species from which the compounds were isolated. SistematX also allows registered users to log in to the data management area and gain access to administrative pages. This study reports recent updates and modifications to the SistematX Web Portal, including a batch download option, the generation and visualization of 1H and 13C nuclear magnetic resonance spectra, and the calculation of physicochemical (drug-like and lead-like) properties and biological activity profiles. The SistematX Web Portal is freely available at http://sistematx.ufpb.br.
Collapse
Affiliation(s)
- Renan P O Costa
- Laboratory of Cheminformatics, Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, Campus I, Cidade Universitária, João Pessoa 58051-900, PB, Brazil
| | - Lucas F Lucena
- Laboratory of Cheminformatics, Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, Campus I, Cidade Universitária, João Pessoa 58051-900, PB, Brazil
| | - Lorena Mara A Silva
- Laboratório Multiusuário de Química de Produtos Naturais, Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita 2270, Planalto do Pici, Fortaleza 60511110, CE, Brazil
| | - Guilherme Julião Zocolo
- Laboratório Multiusuário de Química de Produtos Naturais, Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita 2270, Planalto do Pici, Fortaleza 60511110, CE, Brazil
| | - Chonny Herrera-Acevedo
- Laboratory of Cheminformatics, Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, Campus I, Cidade Universitária, João Pessoa 58051-900, PB, Brazil
| | - Luciana Scotti
- Laboratory of Cheminformatics, Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, Campus I, Cidade Universitária, João Pessoa 58051-900, PB, Brazil
| | - Fernando Batista Da-Costa
- AsterBioChem Research Team, Laboratory of Pharmacognosy, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do café s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Nikita Ionov
- Laboratory of Structure-Function Based Drug Design, Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Str. 10, bldg. 8, Moscow 119121, Russia
| | - Vladimir Poroikov
- Laboratory of Structure-Function Based Drug Design, Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Str. 10, bldg. 8, Moscow 119121, Russia
| | - Eugene N Muratov
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Marcus T Scotti
- Laboratory of Cheminformatics, Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM), Universidade Federal da Paraíba, Campus I, Cidade Universitária, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
8
|
Herrera-Acevedo C, Perdomo-Madrigal C, Muratov EN, Scotti L, Scotti MT. Discovery of Alternative Chemotherapy Options for Leishmaniasis through Computational Studies of Asteraceae. ChemMedChem 2021; 16:1234-1245. [PMID: 33336460 DOI: 10.1002/cmdc.202000862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Leishmaniasis is a complex disease caused by over 20 Leishmania species that primarily affects populations with poor socioeconomic conditions. Currently available drugs for treating leishmaniasis include amphotericin B, paromomycin, and pentavalent antimonials, which have been associated with several limitations, such as low efficacy, the development of drug resistance, and high toxicity. Natural products are an interesting source of new drug candidates. The Asteraceae family includes more than 23 000 species worldwide. Secondary metabolites that can be found in species from this family have been widely explored as potential new treatments for leishmaniasis. Recently, computational tools have become more popular in medicinal chemistry to establish experimental designs, identify new drugs, and compare the molecular structures and activities of novel compounds. Herein, we review various studies that have used computational tools to examine various compounds identified in the Asteraceae family in the search for potential drug candidates against Leishmania.
Collapse
Affiliation(s)
- Chonny Herrera-Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Camilo Perdomo-Madrigal
- School of Science, Universidad de Ciencias Aplicadas y Ambientales, Calle 222 n° 55-37, Bogotá D.C., Colombia
| | - Eugene N Muratov
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| |
Collapse
|