1
|
Yamasaki T, Kumata K, Hiraishi A, Zhang Y, Wakizaka H, Kurihara Y, Nengaki N, Zhang MR. Synthesis of [ 11C]carbonyl-labeled cyclohexyl (5-(2-acetamidobenzo[d]thiazol-6-yl)-2-methylpyridin-3-yl)carbamate ([ 11C-carbonyl]PK68) as a potential PET tracer for receptor-interacting protein 1 kinase. EJNMMI Radiopharm Chem 2022; 7:4. [PMID: 35290562 PMCID: PMC8924334 DOI: 10.1186/s41181-022-00156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
Background Receptor-interacting protein 1 kinase (RIPK1) is a key enzyme in the regulation of cellular necroptosis. Recently, cyclohexyl (5-(2-acetamidobenzo[d]thiazol-6-yl)-2-methylpyridin-3-yl)carbamate (PK68, 5) has been developed as a potent inhibitor of RIPK1. Herein, we synthesized [11C]carbonyl-labeled PK68 ([11C-carbonyl]PK68, [11C]PK68) as a potential PET tracer for imaging RIPK1 and evaluated its brain uptake in vivo. Results We synthesized [11C]PK68 by reacting amine precursor 14 with [11C]acetyl chloride. At the end of synthesis, we obtained [11C]PK68 of 1200–1790 MBq with a radiochemical yield of 9.1 ± 5.9% (n = 10, decay-corrected to the end of irradiation) and radiochemical purity of > 99%, and a molar activity of 37–99 GBq/μmol starting from 18–33 GBq of [11C]CO2. The fully automated synthesis took 30 min from the end of irradiation. In a small-animal PET study, [11C]PK68 was rapidly distributed in the liver and kidneys of healthy mice after injection, and subsequently cleared from their bodies via hepatobiliary excretion and the intestinal reuptake pathway. Although there was no obvious specific binding of RIPK1 in the PET study, [11C]PK68 demonstrated relatively high stability in vivo and provided useful structural information further candidate development. Conclusions In the present study, we successfully radiosynthesized [11C]PK68 as a potential PET tracer and evaluated its brain uptake. We are planning to optimize the chemical structure of [11C]PK68 and conduct further PET studies on it using pathological models.
Collapse
Affiliation(s)
- Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Atsuto Hiraishi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Hidekatsu Wakizaka
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yusuke Kurihara
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.,SHI Accelerator Service Co. Ltd., 1-17-6 Osaki, Shinagawa-ku, Tokyo, 141-0032, Japan
| | - Nobuki Nengaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.,SHI Accelerator Service Co. Ltd., 1-17-6 Osaki, Shinagawa-ku, Tokyo, 141-0032, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| |
Collapse
|
2
|
Müller F, Sharma A, König J, Fromm MF. Biomarkers for In Vivo Assessment of Transporter Function. Pharmacol Rev 2018; 70:246-277. [PMID: 29487084 DOI: 10.1124/pr.116.013326] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Drug-drug interactions are a major concern not only during clinical practice, but also in drug development. Due to limitations of in vitro-in vivo predictions of transporter-mediated drug-drug interactions, multiple clinical Phase I drug-drug interaction studies may become necessary for a new molecular entity to assess potential drug interaction liabilities. This is a resource-intensive process and exposes study participants, who frequently are healthy volunteers without benefit from study treatment, to the potential risks of a new drug in development. Therefore, there is currently a major interest in new approaches for better prediction of transporter-mediated drug-drug interactions. In particular, researchers in the field attempt to identify endogenous compounds as biomarkers for transporter function, such as hexadecanedioate, tetradecanedioate, coproporphyrins I and III, or glycochenodeoxycholate sulfate for hepatic uptake via organic anion transporting polypeptide 1B or N1-methylnicotinamide for multidrug and toxin extrusion protein-mediated renal secretion. We summarize in this review the currently proposed biomarkers and potential limitations of the substances identified to date. Moreover, we suggest criteria based on current experiences, which may be used to assess the suitability of a biomarker for transporter function. Finally, further alternatives and supplemental approaches to classic drug-drug interaction studies are discussed.
Collapse
Affiliation(s)
- Fabian Müller
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| | - Ashish Sharma
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| |
Collapse
|
3
|
Molecular Imaging of the Noradrenergic System in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:251-274. [DOI: 10.1016/bs.irn.2018.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Wagner S, Teodoro R, Deuther-Conrad W, Kranz M, Scheunemann M, Fischer S, Wenzel B, Egerland U, Hoefgen N, Steinbach J, Brust P. Radiosynthesis and biological evaluation of the new PDE10A radioligand [ 18 F]AQ28A. J Labelled Comp Radiopharm 2016; 60:36-48. [PMID: 27896836 DOI: 10.1002/jlcr.3471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/19/2016] [Accepted: 10/12/2016] [Indexed: 01/10/2023]
Abstract
Cyclic nucleotide phosphodiesterase 10A (PDE10A) regulates the level of the second messengers cAMP and cGMP in particular in brain regions assumed to be associated with neurodegenerative and psychiatric diseases. A better understanding of the pathophysiological role of the expression of PDE10A could be obtained by quantitative imaging of the enzyme by positron emission tomography (PET). Thus, in this study we developed, radiolabeled, and evaluated a new PDE10A radioligand, 8-bromo-1-(6-[18 F]fluoropyridin-3-yl)-3,4-dimethylimidazo[1,5-a]quinoxaline ([18 F]AQ28A). [18 F]AQ28A was radiolabeled by both nucleophilic bromo-to-fluoro or nitro-to-fluoro exchange using K[18 F]F-K2.2.2 -carbonate complex with different yields. Using the superior nitro precursor, we developed an automated synthesis on a Tracerlab FX F-N module and obtained [18 F]AQ28A with high radiochemical yields (33 ± 6%) and specific activities (96-145 GBq·μmol-1 ) for further evaluation. Initially, we investigated the binding of [18 F]AQ28A to the brain of different species by autoradiography and observed the highest density of binding sites in striatum, the brain region with the highest PDE10A expression. Subsequent dynamic PET studies in mice revealed a region-specific accumulation of [18 F]AQ28A in this region, which could be blocked by preinjection of the selective PDE10A ligand MP-10. In conclusion, the data suggest [18 F]AQ28A is a suitable candidate for imaging of PDE10A in rodent brain by PET.
Collapse
Affiliation(s)
- Sally Wagner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Matthias Scheunemann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | | | | | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| |
Collapse
|
5
|
Pike VW. Considerations in the Development of Reversibly Binding PET Radioligands for Brain Imaging. Curr Med Chem 2016; 23:1818-69. [PMID: 27087244 PMCID: PMC5579844 DOI: 10.2174/0929867323666160418114826] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022]
Abstract
The development of reversibly binding radioligands for imaging brain proteins in vivo, such as enzymes, neurotransmitter transporters, receptors and ion channels, with positron emission tomography (PET) is keenly sought for biomedical studies of neuropsychiatric disorders and for drug discovery and development, but is recognized as being highly challenging at the medicinal chemistry level. This article aims to compile and discuss the main considerations to be taken into account by chemists embarking on programs of radioligand development for PET imaging of brain protein targets.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Rm. B3C346A, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Gourand F, Amini N, Jia Z, Stone-Elander S, Guilloteau D, Barré L, Halldin C. [11C]MADAM Used as a Model for Understanding the Radiometabolism of Diphenyl Sulfide Radioligands for Positron Emission Tomography (PET). PLoS One 2015; 10:e0137160. [PMID: 26367261 PMCID: PMC4569384 DOI: 10.1371/journal.pone.0137160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/22/2015] [Indexed: 11/19/2022] Open
Abstract
In quantitative PET measurements, the analysis of radiometabolites in plasma is essential for determining the exact arterial input function. Diphenyl sulfide compounds are promising PET and SPECT radioligands for in vivo quantification of the serotonin transporter (SERT) and it is therefore important to investigate their radiometabolism. We have chosen to explore the radiometabolic profile of [11C]MADAM, one of these radioligands widely used for in vivo PET-SERT studies. The metabolism of [11C]MADAM/MADAM was investigated using rat and human liver microsomes (RLM and HLM) in combination with radio-HPLC or UHPLC/Q-ToF-MS for their identification. The effect of carrier on the radiometabolic rate of the radioligand [11C]MADAM in vitro and in vivo was examined by radio-HPLC. RLM and HLM incubations were carried out at two different carrier concentrations of 1 and 10 μM. Urine samples after perfusion of [11C]MADAM/MADAM in rats were also analysed by radio-HPLC. Analysis by UHPLC/Q-ToF-MS identified the metabolites produced in vitro to be results of N-demethylation, S-oxidation and benzylic hydroxylation. The presence of carrier greatly affected the radiometabolism rate of [11C]MADAM in both RLM/HLM experiments and in vivo rat studies. The good concordance between the results predicted by RLM and HLM experiments and the in vivo data obtained in rat studies indicate that the kinetics of the radiometabolism of the radioligand [11C]MADAM is dose-dependent. This issue needs to be addressed when the diarylsulfide class of compounds are used in PET quantifications of SERT.
Collapse
Affiliation(s)
- Fabienne Gourand
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, SE-171 76 Stockholm, Sweden
- CEA, DSV/I2BM, LDM-TEP Group, GIP Cyceron, Bd Henri Becquerel, BP 5229, F-14074 Caen, France
- Université de Caen Basse-Normandie, Caen, France
- CNRS, UMR ISTCT 6301, LDM-TEP Group, GIP Cyceron, Caen, France
- * E-mail:
| | - Nahid Amini
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, SE-171 76 Stockholm, Sweden
| | - Zhisheng Jia
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, SE-171 76 Stockholm, Sweden
| | - Sharon Stone-Elander
- Neuroradiology, Karolinska University Hospital, MicroPET and Clinical Neurosciences, Karolinska Institutet SE-171 76 Stockholm, Sweden
| | - Denis Guilloteau
- INSERM U930- Université François Rabelais de Tours, CHRU de Tours, 2 boulevard Tonnellé, 37044 Tours, France
| | - Louisa Barré
- CEA, DSV/I2BM, LDM-TEP Group, GIP Cyceron, Bd Henri Becquerel, BP 5229, F-14074 Caen, France
- Université de Caen Basse-Normandie, Caen, France
- CNRS, UMR ISTCT 6301, LDM-TEP Group, GIP Cyceron, Caen, France
| | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, SE-171 76 Stockholm, Sweden
| |
Collapse
|
7
|
Rami-Mark C, Berroterán-Infante N, Philippe C, Foltin S, Vraka C, Hoepping A, Lanzenberger R, Hacker M, Mitterhauser M, Wadsak W. Radiosynthesis and first preclinical evaluation of the novel norepinephrine transporter pet-ligand [(11)C]ME@HAPTHI. EJNMMI Res 2015; 5:113. [PMID: 26061602 PMCID: PMC4467816 DOI: 10.1186/s13550-015-0113-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/22/2015] [Indexed: 11/16/2022] Open
Abstract
Background The norepinephrine transporter (NET) has been demonstrated to be relevant to a multitude of neurological, psychiatric and cardiovascular pathologies. Due to the wide range of possible applications for PET imaging of the NET together with the limitations of currently available radioligands, novel PET tracers for imaging of the cerebral NET with improved pharmacological and pharmacodynamic properties are needed. Methods The present study addresses the radiosynthesis and first preclinical evaluation of the novel NET PET tracer [11C]Me@HAPTHI by describing its affinity, selectivity, metabolic stability, plasma free fraction, blood–brain barrier (BBB) penetration and binding behaviour in in vitro autoradiography. Results [11C]Me@HAPTHI was prepared and displayed outstanding affinity and selectivity as well as excellent in vitro metabolic stability, and it is likely to penetrate the BBB. Moreover, selective NET binding in in vitro autoradiography was observed in human brain and rat heart tissue samples. Conclusions All preclinical results and radiosynthetic key-parameters indicate that the novel benzothiadiazole dioxide-based PET tracer [11C]Me@HAPTHI is a feasible and improved NET radioligand and might prospectively facilitate clinical NET imaging. Electronic supplementary material The online version of this article (doi:10.1186/s13550-015-0113-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina Rami-Mark
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Synthesis and in silico evaluation of novel compounds for PET-based investigations of the norepinephrine transporter. Molecules 2015; 20:1712-30. [PMID: 25608857 PMCID: PMC6272146 DOI: 10.3390/molecules20011712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 12/12/2022] Open
Abstract
Since the norepinephrine transporter (NET) is involved in a variety of diseases, the investigation of underlying dysregulation-mechanisms of the norepinephrine (NE) system is of major interest. Based on the previously described highly potent and selective NET ligand 1-(3-(methylamino)-1-phenylpropyl)-3-phenyl-1,3-dihydro-2H-benzimidaz- ol-2-one (Me@APPI), this paper aims at the development of several fluorinated methylamine-based analogs of this compound. The newly synthesized compounds were computationally evaluated for their interactions with the monoamine transporters and represent reference compounds for PET-based investigation of the NET.
Collapse
|
9
|
Joshi EM, Need A, Schaus J, Chen Z, Benesh D, Mitch C, Morton S, Raub TJ, Phebus L, Barth V. Efficiency gains in tracer identification for nuclear imaging: can in vivo LC-MS/MS evaluation of small molecules screen for successful PET tracers? ACS Chem Neurosci 2014; 5:1154-63. [PMID: 25247893 DOI: 10.1021/cn500073j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Positron emission tomography (PET) imaging has become a useful noninvasive technique to explore molecular biology within living systems; however, the utility of this method is limited by the availability of suitable radiotracers to probe specific targets and disease biology. Methods to identify potential areas of improvement in the ability to predict small molecule performance as tracers prior to radiolabeling would speed the discovery of novel tracers. In this retrospective analysis, we characterized the brain penetration or peak SUV (standardized uptake value), binding potential (BP), and brain exposure kinetics across a series of known, nonradiolabeled PET ligands using in vivo LC-MS/MS (liquid chromatography coupled to mass spectrometry) and correlated these parameters with the reported PET ligand performance in nonhuman primates and humans available in the literature. The PET tracers studied included those reported to label G protein-coupled receptors (GPCRs), intracellular enzymes, and transporters. Additionally, data for each tracer was obtained from a mouse brain uptake assay (MBUA), previously published, where blood-brain barrier (BBB) penetration and clearance parameters were assessed and compared against similar data collected on a broad compound set of central nervous system (CNS) therapeutic compounds. The BP and SUV identified via nonradiolabeled LC-MS/MS, while different from the published values observed in the literature PET tracer data, allowed for an identification of initial criteria values we sought to facilitate increased potential for success from our early discovery screening paradigm. Our analysis showed that successful, as well as novel, clinical PET tracers exhibited BP of greater than 1.5 and peak SUVs greater than approximately 150% at 5 min post dose in rodents. The brain kinetics appeared similar between both techniques despite differences in tracer dose, suggesting linearity across these dose ranges. The assessment of tracers in a CNS exposure model, the mouse brain uptake assessment (MBUA), showed that those compound with initial brain-to-plasma ratios >2 and unbound fraction in brain homogenate >0.01 were more likely to be clinically successful PET ligands. Taken together, early incorporation of a LC/MS/MS cold tracer discovery assay and a parallel MBUA can be an useful screening paradigm to prioritize and rank order potential novel PET radioligands during early tracer discovery efforts. Compounds considered for continued in vivo PET assessments can be identified quickly by leveraging in vitro affinity and selectivity measures, coupled with data from a MBUA, primarily the 5 min brain-to-plasma ratio and unbound fraction data. Coupled utilization of these data creates a strategy to efficiently screen for the identification of appropriate chemical space to invest in for radiotracer discovery.
Collapse
Affiliation(s)
- Elizabeth M. Joshi
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Anne Need
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - John Schaus
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Zhaogen Chen
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Dana Benesh
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Charles Mitch
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Stuart Morton
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Thomas J. Raub
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Lee Phebus
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Vanessa Barth
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| |
Collapse
|
10
|
Risinger R, Bhagwagar Z, Luo F, Cahir M, Miler L, Mendonza AE, Meyer JH, Zheng M, Hayes W. Evaluation of safety and tolerability, pharmacokinetics, and pharmacodynamics of BMS-820836 in healthy subjects: a placebo-controlled, ascending single-dose study. Psychopharmacology (Berl) 2014; 231:2299-310. [PMID: 24337079 DOI: 10.1007/s00213-013-3391-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/26/2013] [Indexed: 12/28/2022]
Abstract
RATIONALE BMS-820836, a novel triple monoamine reuptake inhibitor, is an experimental monotherapy for sufferers of major depressive disorder who have had an inadequate response to an existing antidepressant treatment. OBJECTIVES This study was conducted to evaluate the safety and tolerability, pharmacokinetics (PK), and serotonin transporter (SERT) and dopamine transporter (DAT) occupancy for single doses of BMS-820836 in healthy subjects. METHODS Healthy subjects were assigned to seven BMS-820836 dose panels (0.025, 0.1, 0.5, 1, 2, 3, and 5 mg; n = 8 each), in which subjects were randomly allocated 3:1 to a single BMS-820836 dose or matched placebo. Serial blood samples were collected on Days 1, 2, 3, 4, 7, and 14 to characterize the PK of BMS-820836. Following evaluation of the maximum tolerated dose, SERT occupancy was determined by applying [(11)C]DASB positron emission tomography (PET) after single-dose BMS-820836 (0.5 or 3 mg; n = 3 each) and DAT occupancy by applying [(11)C]PE2I PET after single-dose BMS-820836 (3 mg; n = 6). RESULTS Single oral doses of BMS-820836 (0.025-3 mg) were generally safe and well tolerated. BMS-820836 had a median T max of 5.0-7.2 h and a mean apparent terminal T 1/2 of 34-57 h. Mean striatal SERT occupancies were 19 ± 9 % and 82 ± 8 % after single doses of 0.5 and 3 mg BMS-820836, respectively. The mean striatal DAT occupancy was 19 ± 9 % after a single 3 mg BMS-820836 dose. CONCLUSIONS Single doses of BMS-820836 have meaningful SERT and DAT occupancy and demonstrate an acceptable safety and tolerability profile in healthy control subjects.
Collapse
Affiliation(s)
- Robert Risinger
- Discovery Medicine and Clinical Pharmacology, Bristol-Myers Squibb, Route 206 and Province Line Road, Lawrenceville, NJ, 08543-5400, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mark C, Bornatowicz B, Mitterhauser M, Hendl M, Nics L, Haeusler D, Lanzenberger R, Berger ML, Spreitzer H, Wadsak W. Development and automation of a novel NET-PET tracer: [11C]Me@APPI. Nucl Med Biol 2013; 40:295-303. [DOI: 10.1016/j.nucmedbio.2012.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/07/2012] [Accepted: 11/15/2012] [Indexed: 10/27/2022]
|
12
|
Gulyás B, Vas Á, Tóth M, Takano A, Varrone A, Cselényi Z, Schain M, Mattsson P, Halldin C. Age and disease related changes in the translocator protein (TSPO) system in the human brain: Positron emission tomography measurements with [11C]vinpocetine. Neuroimage 2011; 56:1111-21. [DOI: 10.1016/j.neuroimage.2011.02.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/02/2011] [Accepted: 02/05/2011] [Indexed: 01/06/2023] Open
|
13
|
Motion-Artifact-Free In Vivo Imaging Utilizing Narcotized Avian Embryos In Ovo. Mol Imaging Biol 2010; 13:208-14. [DOI: 10.1007/s11307-010-0355-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Serdons K, Verbruggen A, Bormans GM. Developing new molecular imaging probes for PET. Methods 2009; 48:104-11. [PMID: 19318126 DOI: 10.1016/j.ymeth.2009.03.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022] Open
Abstract
Positron emission tomography (PET) is a fully translational molecular imaging technique that requires specific probes radiolabelled with short-lived positron emitting radionuclides. This review discusses relevant methods which are applied throughout the different steps in the development of new PET probes for in vivo visualization of specific molecular targets related to diagnosis or important for drug development.
Collapse
Affiliation(s)
- Kim Serdons
- Laboratory for Radiopharmacy, K.U.Leuven, Herestraat 49 bus 821, BE3000 Leuven, Belgium
| | | | | |
Collapse
|