1
|
Tiburcio PD, Chen K, Xu L, Chen KS. Actinomycin D and bortezomib disrupt protein homeostasis in Wilms tumor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598518. [PMID: 38948702 PMCID: PMC11212905 DOI: 10.1101/2024.06.11.598518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Wilms tumor is the most common kidney cancer in children, and diffuse anaplastic Wilms tumor is the most chemoresistant histological subtype. Here, we explore how Wilms tumor cells evade the common chemotherapeutic drug actinomycin D, which inhibits ribosomal RNA biogenesis. Using ribosome profiling, protein arrays, and a genome-wide knockout screen, we describe how actinomycin D disrupts protein homeostasis and blocks cell cycle progression. We found that, when ribosomal capacity is limited by actinomycin D treatment, anaplastic Wilms tumor cells preferentially translate proteasome components and upregulate proteasome activity. Based on these findings, we tested whether the proteasome inhibitor bortezomib sensitizes cells to actinomycin D treatment. Indeed, we found that the combination induces apoptosis both in vitro and in vivo and prolongs survival in xenograft models. Lastly, we show that increased levels of proteasome components are associated with anaplastic histology and worse prognosis in Wilms tumor patients. In sum, maintaining protein homeostasis is critical for Wilms tumor proliferation, and it can be therapeutically disrupted by blocking protein synthesis or turnover.
Collapse
Affiliation(s)
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O’Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lin Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Quantitative Biomedical Research Center, Peter O’Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kenneth S. Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
2
|
Guz W, Podgórski R, Bober Z, Aebisher D, Truszkiewicz A, Olek M, Machorowska Pieniążek A, Kawczyk-Krupka A, Bartusik-Aebisher D. In Vitro MRS of Cells Treated with Trastuzumab at 1.5 Tesla. Int J Mol Sci 2024; 25:1719. [PMID: 38338997 PMCID: PMC10855746 DOI: 10.3390/ijms25031719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The aim of the study was to investigate the effect of Trastuzumab on the MCF-7 and CRL-2314 breast cancer cell lines. Additionally, an attempt was made to optimize magnetic resonance spectroscopy (MRS) for cell culture studies, with particular emphasis on the impact of treatment with Trastuzumab. The research materials included MCF-7 and CRL-2314 breast cancer cell lines. The study examined the response of these cell lines to treatment with Trastuzumab. The clinical magnetic resonance imaging (MRI) system, OPTIMA MR360 manufactured by GEMS, with a magnetic field induction of 1.5 T, was used. Due to the nature of the tested objects, their size and shape, it was necessary to design and manufacture additional receiving coils. They were used to image the tested cell cultures and record the spectroscopic signal. The spectra obtained by MRS were confirmed by NMR using a 300 MHz NMR Fourier 300 with the TopSpin 3.1 system from Bruker. The designed receiving coils allowed for conducting experiments with the cell lines in a satisfactory manner. These tests would not be possible using factory-delivered coils due to their parameters and the size of the test objects, whose volume did not exceed 1 mL. MRS studies revealed an increase in the metabolite at 1.9 ppm, which indicates the induction of histone acetylation. Changes in histone acetylation play a very important role in both cell development and differentiation processes. The use of Trastuzumab therapy in breast cancer cells increases the levels of acetylated histones. MRS studies and spectra obtained from the 300 MHz NMR system are consistent with the specificity inherent in both systems.
Collapse
Affiliation(s)
- Wiesław Guz
- Department of Diagnostic Imaging and Nuclear Medicine, Medical College of Rzeszów University, 35-959 Rzeszów, Poland;
| | - Rafal Podgórski
- Department of Biochemistry and General Chemistry, Medical College of Rzeszów University, 35-959 Rzeszów, Poland; (R.P.); (D.B.-A.)
| | - Zuzanna Bober
- Department of Photomedicine and Physical Chemistry, Medical College of Rzeszów University, 35-959 Rzeszów, Poland; (Z.B.); (A.T.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of Rzeszów University, 35-959 Rzeszów, Poland; (Z.B.); (A.T.)
| | - Adrian Truszkiewicz
- Department of Photomedicine and Physical Chemistry, Medical College of Rzeszów University, 35-959 Rzeszów, Poland; (Z.B.); (A.T.)
| | - Marcin Olek
- Department of Densitry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (A.M.P.)
| | - Agnieszka Machorowska Pieniążek
- Department of Densitry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (A.M.P.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of Rzeszów University, 35-959 Rzeszów, Poland; (R.P.); (D.B.-A.)
| |
Collapse
|
3
|
C3d(g), iron nanoparticles, hemin and cytochrome c may induce oxidative cytotoxicity in tumors and reduce tumor-associated myeloid cells-mediated immunosuppression. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Karaca C, Tokatli A, Tokatli A, Karadag A, Calibasi-Kocal G. Warburg and pasteur phenotypes modulate cancer behavior and therapy. Anticancer Drugs 2022; 33:e69-e75. [PMID: 34538862 DOI: 10.1097/cad.0000000000001236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Energetic pathways combine in the heart of metabolism. These essential routes supply energy for biochemical processes through glycolysis and oxidative phosphorylation. Moreover, they support the synthesis of various biomolecules employed in growth and survival over branching pathways. Yet, cellular energetics are often misguided in cancers as a result of the mutations and altered signaling. As nontransformed and Pasteur-like cells metabolize glucose through oxidative respiration when only oxygen is sufficient, some cancer cells bypass this metabolic switch and run glycolysis at higher rates even in the presence of oxygen. The phenomenon is called aerobic glycolysis or the Warburg effect. An increasing number of studies indicate that both Warburg and Pasteur phenotypes are recognized in the cancer microenvironment and take vital roles in the regulation of drug resistance mechanisms such as redox homeostasis, apoptosis and autophagy. Therefore, the different phenotypes call for different therapeutic approaches. Combined therapies targeting energy metabolism grant new opportunities to overcome the challenges. Nevertheless, new biomarkers emerge to classify the energetic subtypes, thereby the cancer therapy, as our knowledge in coupling energy metabolism with cancer behavior grows.
Collapse
Affiliation(s)
- Caner Karaca
- Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylul University
| | - Atilla Tokatli
- Student Research Group, Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University
| | - Anja Tokatli
- Student Research Group, Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University
| | - Aslihan Karadag
- Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylul University
| | - Gizem Calibasi-Kocal
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
5
|
Huang L, Chen S, Fan H, Ji D, Chen C, Sheng W. GINS2 promotes EMT in pancreatic cancer via specifically stimulating ERK/MAPK signaling. Cancer Gene Ther 2021; 28:839-849. [PMID: 32747685 PMCID: PMC8370876 DOI: 10.1038/s41417-020-0206-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Go-Ichi-Ni-San 2 (GINS2), as a newly discovered oncogene, is overexpressed in several cancers. However, the specific role of GINS2 in the development of pancreatic cancer (PC), to our knowledge, is poorly understood. We systematically explored the potential role of GINS2 in epithelial-mesenchymal-transition (EMT)-stimulated PC in vitro and vivo. GINS2 was overexpressed in human PC specimens, which was positively associated with tumor size (P = 0.010), T stage (P = 0.006), vascular invasion (P = 0.037), and the poor prognosis (P = 0.004). Interestingly, a close correlation between GINS2, E-cadherin, and Vimentin (P = 0.014) was found in human PC specimens and cell lines that coordinately promoted the worse survival of PC patients (P = 0.009). GINS2 overexpression stimulated EMT in vitro, including promoting EMT-like cellular morphology, enhancing cell motility, and activating EMT and ERK/MAPK signal pathways. However, PD98059, a specific MEK1 inhibitor, reversed GINS2 overexpression-stimulated EMT in vitro. Conversely, GINS2 silencing inhibited EMT in PANC-1 cells, which was also rescued by GINS2-GFP. Moreover, GINS2 was colocalized and co-immunoprecipitated with ERK in GINS2 high-expression Miapaca-2 and PANC-1 cells, implying a tight interaction of GINS2 with ERK/MAPK signaling. Meanwhile, GINS2 overexpression inhibited distant liver metastases in vivo, following a tight association with EMT and ERK/MAPK signaling, which was reversed by MEK inhibitor. Overexpression of GINS2 contributes to advanced clinical stage of PC patient and promotes EMT in vitro and vivo via specifically activating ERK/MAPK signal pathway.
Collapse
Affiliation(s)
- Longping Huang
- Department of General Surgery, Hepatobiliary Surgery, The Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Si Chen
- Department of Anesthesiology, The Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Haijun Fan
- Department of General Surgery, Hepatobiliary Surgery, The Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Dawei Ji
- Department of General Surgery, The Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Chuanping Chen
- Department of Clinical Laboratory, The Sixth Peoples' Hospital of Shenyang, Shenyang, 110003, Liaoning, China
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
6
|
Somasagara RR, Huang X, Xu C, Haider J, Serody JS, Armistead PM, Leung T. Targeted therapy of human leukemia xenografts in immunodeficient zebrafish. Sci Rep 2021; 11:5715. [PMID: 33707624 PMCID: PMC7952715 DOI: 10.1038/s41598-021-85141-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/25/2021] [Indexed: 01/05/2023] Open
Abstract
Personalized medicine holds tremendous promise for improving safety and efficacy of drug therapies by optimizing treatment regimens. Rapidly developed patient-derived xenografts (pdx) could be a helpful tool for analyzing the effect of drugs against an individual's tumor by growing the tumor in an immunodeficient animal. Severe combined immunodeficiency (SCID) mice enable efficient in vivo expansion of vital tumor cells and generation of personalized xenografts. However, they are not amenable to large-scale rapid screening, which is critical in identifying new compounds from large compound libraries. The development of a zebrafish model suitable for pdx could facilitate large-scale screening of drugs targeted against specific malignancies. Here, we describe a novel strategy for establishing a zebrafish model for drug testing in leukemia xenografts. We used chronic myelogenous leukemia and acute myeloid leukemia for xenotransplantation into SCID zebrafish to evaluate drug screening protocols. We showed the in vivo efficacy of the ABL inhibitor imatinib, MEK inhibitor U0126, cytarabine, azacitidine and arsenic trioxide. We performed corresponding in vitro studies, demonstrating that combination of MEK- and FLT3-inhibitors exhibit an enhanced effect in vitro. We further evaluated the feasibility of zebrafish for transplantation of primary human hematopoietic cells that can survive at 15 day-post-fertilization. Our results provide critical insights to guide development of high-throughput platforms for evaluating leukemia.
Collapse
Affiliation(s)
- Ranganatha R Somasagara
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Xiaoyan Huang
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Chunyu Xu
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Jamil Haider
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Jonathan S Serody
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Paul M Armistead
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - TinChung Leung
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA. .,Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
7
|
Sobczuk P, Brodziak A, Khan MI, Chhabra S, Fiedorowicz M, Wełniak-Kamińska M, Synoradzki K, Bartnik E, Cudnoch-Jędrzejewska A, Czarnecka AM. Choosing The Right Animal Model for Renal Cancer Research. Transl Oncol 2020; 13:100745. [PMID: 32092671 PMCID: PMC7036425 DOI: 10.1016/j.tranon.2020.100745] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
The increase in the life expectancy of patients with renal cell carcinoma (RCC) in the last decade is due to changes that have occurred in the area of preclinical studies. Understanding cancer pathophysiology and the emergence of new therapeutic options, including immunotherapy, would not be possible without proper research. Before new approaches to disease treatment are developed and introduced into clinical practice they must be preceded by preclinical tests, in which animal studies play a significant role. This review describes the progress in animal model development in kidney cancer research starting from the oldest syngeneic or chemically-induced models, through genetically modified mice, finally to xenograft, especially patient-derived, avatar and humanized mouse models. As there are a number of subtypes of RCC, our aim is to help to choose the right animal model for a particular kidney cancer subtype. The data on genetic backgrounds, biochemical parameters, histology, different stages of carcinogenesis and metastasis in various animal models of RCC as well as their translational relevance are summarized. Moreover, we shed some light on imaging methods, which can help define tumor microstructure, assist in the analysis of its metabolic changes and track metastasis development.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Anna Brodziak
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Mohammed Imran Khan
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada.
| | - Stuti Chhabra
- Department of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Michał Fiedorowicz
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Marlena Wełniak-Kamińska
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Anna M Czarnecka
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland; Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| |
Collapse
|
8
|
Chen KS, Stroup EK, Budhipramono A, Rakheja D, Nichols-Vinueza D, Xu L, Stuart SH, Shukla AA, Fraire C, Mendell JT, Amatruda JF. Mutations in microRNA processing genes in Wilms tumors derepress the IGF2 regulator PLAG1. Genes Dev 2018; 32:996-1007. [PMID: 30026293 PMCID: PMC6075147 DOI: 10.1101/gad.313783.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022]
Abstract
Many childhood Wilms tumors are driven by mutations in the microRNA biogenesis machinery, but the mechanism by which these mutations drive tumorigenesis is unknown. Here we show that the transcription factor pleomorphic adenoma gene 1 (PLAG1) is a microRNA target gene that is overexpressed in Wilms tumors with mutations in microRNA processing genes. Wilms tumors can also overexpress PLAG1 through copy number alterations, and PLAG1 expression correlates with prognosis in Wilms tumors. PLAG1 overexpression accelerates growth of Wilms tumor cells in vitro and induces neoplastic growth in the developing mouse kidney in vivo. In both settings, PLAG1 transactivates insulin-like growth factor 2 (IGF2), a key Wilms tumor oncogene, and drives mammalian target of rapamycin complex 1 (mTORC1) signaling. These data link microRNA impairment to the PLAG1-IGF2 pathway, providing new insight into the manner in which common Wilms tumor mutations drive disease pathogenesis.
Collapse
Affiliation(s)
- Kenneth S Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Margaret Gill Center for Cancer and Blood Disorders, Children's Health, Dallas, Texas 75390, USA
| | - Emily K Stroup
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Albert Budhipramono
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Dinesh Rakheja
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Diana Nichols-Vinueza
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lin Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Quantitative Biomedical Research Center, Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas 75290, USA
| | - Sarai H Stuart
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Abhay A Shukla
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Claudette Fraire
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - James F Amatruda
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Margaret Gill Center for Cancer and Blood Disorders, Children's Health, Dallas, Texas 75390, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
9
|
Zhao M, Zhang L, Lv S, Zhang C, Wang L, Chen H, Zhou Y, Lou J. IQGAP1 Mediates Hcp1-Promoted Escherichia coli Meningitis by Stimulating the MAPK Pathway. Front Cell Infect Microbiol 2017; 7:132. [PMID: 28469997 PMCID: PMC5395654 DOI: 10.3389/fcimb.2017.00132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/31/2017] [Indexed: 01/14/2023] Open
Abstract
Escherichia coli-induced meningitis remains a life-threatening disease despite recent advances in the field of antibiotics-based therapeutics, necessitating continued research on its pathogenesis. The current study aims to elucidate the mechanism through which hemolysin-coregulated protein 1 (Hcp1) induces the apoptosis of human brain microvascular endothelial cells (HBMEC). Co-immunoprecipitation coupled with mass spectrometric (MS) characterization led to the identification of IQ motif containing GTPase activating protein 1 (IQGAP1) as a downstream target of Hcp1. IQGAP1 was found to be up-regulated by Hcp1 treatment and mediate the stimulation of HBMEC apoptosis. It was shown that Hcp1 could compete against Smurf1 for binding to IQGAP1, thereby rescuing the latter from ubiquitin-dependent degradation. Subsequent study suggested that IQGAP1 could stimulate the MAPK signaling pathway by promoting the phosphorylation of ERK1/2, an effect that was blocked by U0126, an MAPK inhibitor. Furthermore, U0126 also demonstrated therapeutic potential against E. coli meningitis in a mouse model. Taken together, our results suggested the feasibility of targeting the MAPK pathway as a putative therapeutic strategy against bacterial meningitis.
Collapse
Affiliation(s)
- Mingna Zhao
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Lingfei Zhang
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of SciencesShanghai, China.,Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Shaogang Lv
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Chenzi Zhang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Lin Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Hong Chen
- Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Yan Zhou
- Department of Microbiology and Immunobiology, Harvard Medical SchoolBoston, MA, USA
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
10
|
Thorek DLJ, Kramer RM, Chen Q, Jeong J, Lupu ME, Lee AM, Moynahan ME, Lowery M, Ulmert D, Zanzonico P, Deasy JO, Humm JL, Russell J. Reverse-Contrast Imaging and Targeted Radiation Therapy of Advanced Pancreatic Cancer Models. Int J Radiat Oncol Biol Phys 2015; 93:444-53. [PMID: 26238952 PMCID: PMC4575601 DOI: 10.1016/j.ijrobp.2015.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 01/23/2023]
Abstract
PURPOSE To evaluate the feasibility of delivering experimental radiation therapy to tumors in the mouse pancreas. Imaging and treatment were performed using combined CT (computed tomography)/orthovoltage treatment with a rotating gantry. METHODS AND MATERIALS After intraperitoneal administration of radiopaque iodinated contrast, abdominal organ delineation was performed by x-ray CT. With this technique we delineated the pancreas and both orthotopic xenografts and genetically engineered disease. Computed tomographic imaging was validated by comparison with magnetic resonance imaging. Therapeutic radiation was delivered via a 1-cm diameter field. Selective x-ray radiation therapy of the noninvasively defined orthotopic mass was confirmed using γH2AX staining. Mice could tolerate a dose of 15 Gy when the field was centered on the pancreas tail, and treatment was delivered as a continuous 360° arc. This strategy was then used for radiation therapy planning for selective delivery of therapeutic x-ray radiation therapy to orthotopic tumors. RESULTS Tumor growth delay after 15 Gy was monitored, using CT and ultrasound to determine the tumor volume at various times after treatment. Our strategy enables the use of clinical radiation oncology approaches to treat experimental tumors in the pancreas of small animals for the first time. We demonstrate that delivery of 15 Gy from a rotating gantry minimizes background healthy tissue damage and significantly retards tumor growth. CONCLUSIONS This advance permits evaluation of radiation planning and dosing parameters. Accurate noninvasive longitudinal imaging and monitoring of tumor progression and therapeutic response in preclinical models is now possible and can be expected to more effectively evaluate pancreatic cancer disease and therapeutic response.
Collapse
Affiliation(s)
- Daniel L J Thorek
- Division of Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins School of Medicine, Baltimore, MD.
| | - Robin M Kramer
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center (MSKCC), Weill Cornell Medical College, The Rockefeller University, New York, NY
| | - Qing Chen
- Department of Medical Physics, MSKCC, New York, NY
| | - Jeho Jeong
- Department of Medical Physics, MSKCC, New York, NY
| | | | | | | | | | - David Ulmert
- Molecular Pharmacology and Chemistry Program, MSKCC, New York, NY; Department of Surgery (Urology), Skåne University Hospital, Malmö, Sweden
| | | | | | - John L Humm
- Department of Medical Physics, MSKCC, New York, NY
| | | |
Collapse
|
11
|
Palner M, Shen B, Jeon J, Lin J, Chin FT, Rao J. Preclinical Kinetic Analysis of the Caspase-3/7 PET Tracer 18F-C-SNAT: Quantifying the Changes in Blood Flow and Tumor Retention After Chemotherapy. J Nucl Med 2015; 56:1415-21. [PMID: 26045308 DOI: 10.2967/jnumed.115.155259] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Early detection of tumor response to therapy is crucial to the timely identification of the most efficacious treatments. We recently developed a novel apoptosis imaging tracer, (18)F-C-SNAT (C-SNAT is caspase-sensitive nanoaggregation tracer), that undergoes an intramolecular cyclization reaction after cleavage by caspase-3/7, a biomarker of apoptosis. This caspase-3/7-dependent reaction leads to an enhanced accumulation and retention of (18)F activity in apoptotic tumors. This study aimed to fully examine in vivo pharmacokinetics of the tracer through PET imaging and kinetic modeling in a preclinical mouse model of tumor response to systemic anticancer chemotherapy. METHODS Tumor-bearing nude mice were treated 3 times with intravenous injections of doxorubicin before undergoing a 120-min dynamic (18)F-C-SNAT PET/CT scan. Time-activity curves were extracted from the tumor and selected organs. A 2-tissue-compartment model was fitted to the time-activity curves from tumor and muscle, using the left ventricle of the heart as input function, and the pharmacokinetic rate constants were calculated. RESULTS Both tumor uptake (percentage injected dose per gram) and the tumor-to-muscle activity ratio were significantly higher in the treated mice than untreated mice. Pharmacokinetic rate constants calculated by the 2-tissue-compartment model showed a significant increase in delivery and accumulation of the tracer after the systemic chemotherapeutic treatment. Delivery of (18)F-C-SNAT to the tumor tissue, quantified as K1, increased from 0.31 g⋅(mL⋅min)(-1) in untreated mice to 1.03 g⋅(mL⋅min)(-1) in treated mice, a measurement closely related to changes in blood flow. Accumulation of (18)F-C-SNAT, quantified as k3, increased from 0.03 to 0.12 min(-1), proving a higher retention of (18)F-C-SNAT in treated tumors independent from changes in blood flow. An increase in delivery was also found in the muscular tissue of treated mice without increasing accumulation. CONCLUSION (18)F-C-SNAT has significantly increased tumor uptake and significantly increased tumor-to-muscle ratio in a preclinical mouse model of tumor therapy. Furthermore, our kinetic modeling of (18)F-C-SNAT shows that chemotherapeutic treatment increased accumulation (k3) in the treated tumors, independent of increased delivery (K1).
Collapse
Affiliation(s)
- Mikael Palner
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California; and
| | - Bin Shen
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California; and
| | - Jongho Jeon
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California; and
| | - Jianguo Lin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California; and Key Laboratory of Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Frederick T Chin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California; and
| | - Jianghong Rao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California; and
| |
Collapse
|
12
|
Tegnebratt T, Ruge E, Bader S, Ishii N, Aida S, Yoshimura Y, Ooi CH, Lu L, Mitsios N, Meresse V, Mulder J, Pawlak M, Venturi M, Tessier J, Stone-Elander S. Evaluation of efficacy of a new MEK inhibitor, RO4987655, in human tumor xenografts by [(18)F] FDG-PET imaging combined with proteomic approaches. EJNMMI Res 2014; 4:34. [PMID: 26116108 PMCID: PMC4452660 DOI: 10.1186/s13550-014-0034-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/22/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Inhibition of mitogen-activated protein kinase (MEK, also known as MAPK2, MAPKK), a key molecule of the Ras/MAPK (mitogen-activated protein kinase) pathway, has shown promising effects on B-raf-mutated and some RAS (rat sarcoma)-activated tumors in clinical trials. The objective of this study is to examine the efficacy of a novel allosteric MEK inhibitor RO4987655 in K-ras-mutated human tumor xenograft models using [(18)F] FDG-PET imaging and proteomics technology. METHODS [(18)F] FDG uptake was studied in human lung carcinoma xenografts from day 0 to day 9 of RO4987655 therapy using microPET Focus 120 (CTI Concorde Microsystems, Knoxville, TN, USA). The expression levels of GLUT1 and hexokinase 1 were examined using semi-quantitative fluorescent immunohistochemistry (fIHC). The in vivo effects of RO4987655 on MAPK/PI3K pathway components were assessed by reverse phase protein arrays (RPPA). RESULTS We have observed modest metabolic decreases in tumor [(18)F] FDG uptake after MEK inhibition by RO4987655 as early as 2 h post-treatment. The greatest [(18)F] FDG decreases were found on day 1, followed by a rebound in [(18)F] FDG uptake on day 3 in parallel with decreasing tumor volumes. Molecular analysis of the tumors by fIHC did not reveal statistically significant correlations of GLUT1 and hexokinase 1 expressions with the [(18)F] FDG changes. RPPA signaling response profiling revealed not only down-regulation of pERK1/2, pMKK4, and pmTOR on day 1 after RO4987655 treatment but also significant up-regulation of pMEK1/2, pMEK2, pC-RAF, and pAKT on day 3. The up-regulation of these markers is interpreted to be indicative of a reactivation of the MAPK and activation of the compensatory PI3K pathway, which can also explain the rebound in [(18)F] FDG uptake following MEK inhibition with RO4987655 in the K-ras-mutated human tumor xenografts. CONCLUSIONS We have performed the first preclinical evaluation of a new MEK inhibitor, RO4987655, using a combination of [(18)F] FDG-PET imaging and molecular proteomics. These results provide support for using preclinical [(18)F] FDG-PET imaging in early, non-invasive monitoring of the effects of MEK and perhaps other Ras/MAPK signaling pathway inhibitors, which should facilitate a wider implementation of clinical [(18)F] FDG-PET to optimize their clinical use.
Collapse
Affiliation(s)
- Tetyana Tegnebratt
- />Karolinska Institutet and Department of Neuroradiology, R3:00, MicroPET and Clinical Neurosciences, Karolinska University Hospital, Stockholm, 17176 Sweden
| | - Elisabeth Ruge
- />Pharmaceutical Research and Early Development (pRED), Oncology, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377 Germany
| | - Sabine Bader
- />Pharmaceutical Research and Early Development (pRED), Pharmaceutical Sciences, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377 Germany
| | - Nobuya Ishii
- />Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, 247-8530 Japan
| | - Satoshi Aida
- />Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, 247-8530 Japan
| | - Yasushi Yoshimura
- />Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, 247-8530 Japan
| | - Chia-Huey Ooi
- />Pharmaceutical Research and Early Development (pRED), Pharmaceutical Sciences, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377 Germany
| | - Li Lu
- />Karolinska Institutet and Department of Neuroradiology, R3:00, MicroPET and Clinical Neurosciences, Karolinska University Hospital, Stockholm, 17176 Sweden
| | - Nicholas Mitsios
- />Karolinska Institutet, Science for Life Lab, Tomtebodavägen 23A, Solna, 17176 Sweden
| | - Valerie Meresse
- />F. Hoffmann-La-Roche Ltd., Building 682/226, Steinentorberg 8/12, Basel, 4070 Switzerland
| | - Jan Mulder
- />Karolinska Institutet, Science for Life Lab, Tomtebodavägen 23A, Solna, 17176 Sweden
| | - Michael Pawlak
- />Department of Biochemistry and Protein Profiling, NMI Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, Reutlingen, 72770 Germany
| | - Miro Venturi
- />Pharmaceutical Research and Early Development (pRED), Oncology, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377 Germany
| | - Jean Tessier
- />F. Hoffmann-La-Roche Ltd., Building 682/226, Steinentorberg 8/12, Basel, 4070 Switzerland
| | - Sharon Stone-Elander
- />Karolinska Institutet and Department of Neuroradiology, R3:00, MicroPET and Clinical Neurosciences, Karolinska University Hospital, Stockholm, 17176 Sweden
| |
Collapse
|
13
|
Li R, Zhang L, Jia L, Duan Y, Li Y, Bao L, Sha N. Long non-coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation. PLoS One 2014; 9:e100893. [PMID: 24967732 PMCID: PMC4072697 DOI: 10.1371/journal.pone.0100893] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/02/2014] [Indexed: 01/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to be implicated in the complex network of cancer including malignant melanoma and play important roles in tumorigenesis and progression. However, their functions and downstream mechanisms are largely unknown. This study aimed to investigate whether BRAF-activated non-coding RNA (BANCR), a novel and potential regulator of melanoma cell, participates in the proliferation of malignant melanoma and elucidate the underlying mechanism in this process. We found that BANCR was abnormally overexpressed in human malignant melanoma cell lines and tissues, and increased with tumor stages by quantitative PCR. BANCR knockdown induced by shRNA transfection significantly inhibited proliferation of tumor cells and inactivated MAPK pathway, especially by silencing the ERK1/2 and JNK component. Moreover, combination treatment of BANCR knockdown and suppression ERK1/2 or JNK (induced by specific inhibitors U0126 or SP600125 respectively) produced synergistic inhibitory effects in vitro. And the inhibitory effects induced by ERK1/2 or JNK could be rescued by BANCR overexpression. By tumorigenicity assay in BALB/c nude mice, we further found that BANCR knockdown inhibited tumor growth in vivo. In addition, patients with high expression of BANCR had a lower survival rate. Taken together, we confirmed the abnormal upregulation of a novel lncRNA, BANCR, in human malignant melanoma. BANCR was involved in melanoma cell proliferation both in vitro and in vivo. The linkage between BANCR and MAPK pathway may provide a novel interpretation for the mechanism of proliferation regulation in malignant melanoma.
Collapse
Affiliation(s)
- Ruiya Li
- Department of Dermatology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Lingli Zhang
- Department of Pathology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Lizhou Jia
- Department of Pathology, The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yan Duan
- Department of Dermatology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yan Li
- Department of Dermatology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Lidao Bao
- Department of Pharmacy, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Na Sha
- Department of Dermatology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
14
|
Fleming IN, Andriu A, Smith TAD. Early changes in [18F]FDG incorporation by breast cancer cells treated with trastuzumab in normoxic conditions: role of the Akt-pathway, glucose transport and HIF-1α. Breast Cancer Res Treat 2014; 144:241-8. [PMID: 24522376 DOI: 10.1007/s10549-014-2858-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/23/2014] [Indexed: 12/30/2022]
Abstract
HER-2 overexpression does not guarantee response to HER2-targeting drugs such as trastuzumab, which is cardiotoxic and expensive, so early detection of response status is crucial. Factors influencing [(18)F]FDG incorporation in the timeframe of cell signalling down-regulation subsequent to trastuzumab treatment are investigated to provide a better understanding of the relationship between growth response and modulation of [(18)F]FDG incorporation. HER-2-overexpressing breast tumour cell lines, MDA-MB-453, SKBr3 and BT474 and MDA-MB-468 (HER2 non-over-expressor) were treated with trastuzumab (4 h) and probed for AKT, pAKT, ERK1/2, pERK1/2 and HIF-1α to determine early signalling pathway inhibitory effects of trastuzumab. Cells incubated with trastuzumab and/or PI3K inhibitor LY294002 and ERK1/2 inhibitor U0126 and glucose transport and [(18)F]FDG incorporation measured. Cell lines expressed AKT, pAKT, ERK1/2 and pERK1/2 but not HIF-1α. Trastuzumab treatment decreased pAkt but not pERK1/2 levels. Trastuzumab did not further inhibit AKT when maximally inhibited with LY294002. Treatment with LY294002 and trastuzumab for 4 h decreased [(18)F]FDG incorporation in BT474 and MDA-MB-453 but not SKBr3 cells. LY294002 inhibited glucose transport by each cell line, but the glucose transport rate was tenfold higher by SKBr3 cells than BT474 and MDA-MB-453 cells. AKT-induced uptake of [(18)F]FDG was found to be HIF-1α independent in breast cancer cell lines. AKT inhibition level and tumour cell glucose transport rate can influence whether or not PI3K inhibitors affect [(18)F]FDG incorporation which may account for the variation in preclinical and clinical findings associated with [(18)F]FDG-PET in response to trastuzumab and other HER-2 targeting drugs.
Collapse
Affiliation(s)
- Ian N Fleming
- Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Foresterhill, Aberdeen, AB24 2TN, UK
| | | | | |
Collapse
|