1
|
Rajora AK, Ahire ED, Rajora M, Singh S, Bhattacharya J, Zhang H. Emergence and impact of theranostic-nanoformulation of triple therapeutics for combination cancer therapy. SMART MEDICINE 2024; 3:e20230035. [PMID: 39188518 PMCID: PMC11235932 DOI: 10.1002/smmd.20230035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/30/2023] [Indexed: 08/28/2024]
Abstract
Cancer remains a major global health threat necessitating the multipronged approaches for its prevention and management. Traditional approaches in the form of chemotherapy, surgery, and radiotherapy are often encountered with poor patient outcomes evidenced by high mortality and morbidity, compelling the need for precision medicine for cancer patients to enable personalized and targeted cancer treatment. There has been an emergence of smart multimodal theranostic nanoformulation for triple combination cancer therapy in the last few years, which dramatically enhances the overall safety of the nanoformulation for in vivo and potential clinical applications with minimal toxicity. However, it is imperative to gain insight into the limitations of this system in terms of clinical translation, cost-effectiveness, accessibility, and multidisciplinary collaboration. This review paper aims to highlight and compare the impact of the recent theranostic nanoformulations of triple therapeutics in a single nanocarrier for effective management of cancer and provide a new dimension for diagnostic and treatment simultaneously.
Collapse
Affiliation(s)
- Amit Kumar Rajora
- NanoBiotechnology LabSchool of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
| | - Eknath D. Ahire
- Department of Pharmaceutics, Mumbai Educational Trust (MET), Institute of PharmacyAffiliated to Savitribai Phule, Pune UniversityNashikMaharashtraIndia
| | - Manju Rajora
- College of NursingAll India Institute of Medical SciencesNew DelhiIndia
| | - Sukhvir Singh
- Radiological Physics and Internal Dosimetry (RAPID) GroupInstitute of Nuclear Medicine and Allied SciencesDefense Research & Development Organization, Ministry of DefenseTimarpurDelhiIndia
| | - Jaydeep Bhattacharya
- NanoBiotechnology LabSchool of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryFaculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
2
|
Zirbesegger K, Reyes L, Paolino A, Dapueto R, Arredondo F, Gambini JP, Savio E, Porcal W. Molecular Imaging of Monoamine Oxidase A Expression in Highly Aggressive Prostate Cancer: Synthesis and Preclinical Evaluation of Positron Emission Tomography Tracers. ACS Pharmacol Transl Sci 2023; 6:1734-1744. [PMID: 37982127 PMCID: PMC10653014 DOI: 10.1021/acsptsci.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023]
Abstract
The role of monoamine oxidase A (MAO-A) in the aggressiveness of prostate cancer (PCa) has been established in recent years. The molecular imaging of MAO-A expression could offer a noninvasive tool for the visualization and quantification of highly aggressive PCa. This study reports the synthesis and preclinical evaluation of 11C- and 18F-labeled MAO-A inhibitors as positron emission tomography (PET) tracers for proof-of-concept studies in animal models of PCa. Good manufacturing practice production and quality control of these radiotracers using an automated platform was achieved. PET imaging was performed in an LNCaP tumor model with high MAO-A expression. The tumor-to-muscle (T/M) uptake ratio of [11C]harmine (4.5 ± 0.5) was significantly higher than that for 2-[18F]fluoroethyl-harmol (2.3 ± 0.7) and [11C]clorgyline (2.0 ± 0.1). A comparable ex vivo biodistribution pattern in all radiotracers was observed. Furthermore, the tumor uptake of [11C]harmine showed a dramatic reduction (T/M = 1) in a PC3 tumor model with limited MAO-A expression, and radioactivity uptake in LNCaP tumors was blocked in the presence of nonradioactive harmine. Our findings suggest that [11C]harmine may serve as an attractive PET probe for the visualization of MAO-A expression in highly aggressive PCa. These radiotracers have the potential for clinical translation and may aid in the development of personalized therapeutic strategies for PCa patients.
Collapse
Affiliation(s)
- Kevin Zirbesegger
- Centro Uruguayo de Imagenología
Molecular (CUDIM), Ricaldoni 2010, 11600 Montevideo,
Uruguay
- Programa de Posgrado, Facultad de Química,
Universidad de la República, Av. General Flores 2124,
11800 Montevideo, Uruguay
| | - Laura Reyes
- Centro Uruguayo de Imagenología
Molecular (CUDIM), Ricaldoni 2010, 11600 Montevideo,
Uruguay
| | - Andrea Paolino
- Centro Uruguayo de Imagenología
Molecular (CUDIM), Ricaldoni 2010, 11600 Montevideo,
Uruguay
| | - Rosina Dapueto
- Centro Uruguayo de Imagenología
Molecular (CUDIM), Ricaldoni 2010, 11600 Montevideo,
Uruguay
| | - Florencia Arredondo
- Centro Uruguayo de Imagenología
Molecular (CUDIM), Ricaldoni 2010, 11600 Montevideo,
Uruguay
| | - Juan P. Gambini
- Centro Uruguayo de Imagenología
Molecular (CUDIM), Ricaldoni 2010, 11600 Montevideo,
Uruguay
| | - Eduardo Savio
- Centro Uruguayo de Imagenología
Molecular (CUDIM), Ricaldoni 2010, 11600 Montevideo,
Uruguay
| | - Williams Porcal
- Departamento de Química Orgánica, Facultad
de Química, Universidad de la República, Av.
General Flores 2124, 11800 Montevideo, Uruguay
| |
Collapse
|
3
|
Alberto S, Ordonez AA, Arjun C, Aulakh GK, Beziere N, Dadachova E, Ebenhan T, Granados U, Korde A, Jalilian A, Lestari W, Mukherjee A, Petrik M, Sakr T, Cuevas CLS, Welling MM, Zeevaart JR, Jain SK, Wilson DM. The Development and Validation of Radiopharmaceuticals Targeting Bacterial Infection. J Nucl Med 2023; 64:1676-1682. [PMID: 37770110 PMCID: PMC10626374 DOI: 10.2967/jnumed.123.265906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
The International Atomic Energy Agency organized a technical meeting at its headquarters in Vienna, Austria, in 2022 that included 17 experts representing 12 countries, whose research spanned the development and use of radiolabeled agents for imaging infection. The meeting focused largely on bacterial pathogens. The group discussed and evaluated the advantages and disadvantages of several radiopharmaceuticals, as well as the science driving various imaging approaches. The main objective was to understand why few infection-targeted radiotracers are used in clinical practice despite the urgent need to better characterize bacterial infections. This article summarizes the resulting consensus, at least among the included scientists and countries, on the current status of radiopharmaceutical development for infection imaging. Also included are opinions and recommendations regarding current research standards in this area. This and future International Atomic Energy Agency-sponsored collaborations will advance the goal of providing the medical community with innovative, practical tools for the specific image-based diagnosis of infection.
Collapse
Affiliation(s)
- Signore Alberto
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome "Sapienza," Rome, Italy
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chanda Arjun
- Radiopharmaceutical Program, Board of Radiation and Isotope Technology, Mumbai, India
| | - Gurpreet Kaur Aulakh
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thomas Ebenhan
- Nuclear Medicine, University of Pretoria, and Radiochemistry, Applied Radiation, South African Nuclear Energy Corporation, Pelindaba, South Africa
| | - Ulises Granados
- Department of Nuclear Medicine, Hospital Internacional de Colombia-Fundación Cardiovascular de Colombia, Piedecuesta, Colombia
| | - Aruna Korde
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Amirreza Jalilian
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Wening Lestari
- National Nuclear Energy Agency, South Tangerang, Indonesia
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Milos Petrik
- Institute of Molecular and Translational Medicine and Czech Advanced Technology and Research Institute, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Tamer Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | | | - Mick M Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Jan Rijn Zeevaart
- Nuclear Medicine, University of Pretoria, and Radiochemistry, Applied Radiation, South African Nuclear Energy Corporation, Pelindaba, South Africa
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
4
|
Zhang G, Ye HR, Sun Y, Guo ZZ. Ultrasound Molecular Imaging and Its Applications in Cancer Diagnosis and Therapy. ACS Sens 2022; 7:2857-2864. [PMID: 36190830 DOI: 10.1021/acssensors.2c01468] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ultrasound imaging is regarded as a highly sensitive imaging modality used in routine clinical examinations. Over the last several decades, ultrasound contrast agents have been widely applied in ultrasound molecular cancer imaging to improve the detection, characterization, and quantification of tumors. To date, a few new potential preclinical and clinical applications regarding ultrasound molecular cancer imaging are being investigated. This review presents an overview of the various kinds of ultrasound contrast agents employed in ultrasound molecular imaging and advanced imaging techniques using these contrast agents. Additionally, we discuss the recent enormous development of ultrasound contrast agents in the relevant preclinical and clinical applications, highlight the recent challenges which need to be overcome to accelerate the clinical translation, and discuss the future perspective of ultrasound molecular cancer imaging using various contrast agents. As a highly promising and valuable tumor-specific imaging technique, it is believed that ultrasound molecular imaging will pave an accurate and efficient way for cancer diagnosis.
Collapse
Affiliation(s)
- Ge Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China, 430070.,Department of Medical Ultrasound, China Resources and Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China, 430080
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources and Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China, 430080
| | - Yao Sun
- College of Chemistry, Central China Normal University, Wuhan, China, 430079
| | - Zhen-Zhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China, 430070
| |
Collapse
|
5
|
Comprehensive review on design perspective of PET ligands based on β-amyloids, tau and neuroinflammation for diagnostic intervention of Alzheimer’s disease. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|