1
|
Pan S, Ding A, Li Y, Sun Y, Zhan Y, Ye Z, Song N, Peng B, Li L, Huang W, Shao H. Small-molecule probes from bench to bedside: advancing molecular analysis of drug-target interactions toward precision medicine. Chem Soc Rev 2023; 52:5706-5743. [PMID: 37525607 DOI: 10.1039/d3cs00056g] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Over the past decade, remarkable advances have been witnessed in the development of small-molecule probes. These molecular tools have been widely applied for interrogating proteins, pathways and drug-target interactions in preclinical research. While novel structures and designs are commonly explored in probe development, the clinical translation of small-molecule probes remains limited, primarily due to safety and regulatory considerations. Recent synergistic developments - interfacing novel chemical probes with complementary analytical technologies - have introduced and expedited diverse biomedical opportunities to molecularly characterize targeted drug interactions directly in the human body or through accessible clinical specimens (e.g., blood and ascites fluid). These integrated developments thus offer unprecedented opportunities for drug development, disease diagnostics and treatment monitoring. In this review, we discuss recent advances in the structure and design of small-molecule probes with novel functionalities and the integrated development with imaging, proteomics and other emerging technologies. We further highlight recent applications of integrated small-molecule technologies for the molecular analysis of drug-target interactions, including translational applications and emerging opportunities for whole-body imaging, tissue-based measurement and blood-based analysis.
Collapse
Affiliation(s)
- Sijun Pan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yisi Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yaxin Sun
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yueqin Zhan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Zhenkun Ye
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Ning Song
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
2
|
Waldner MJ, Neurath MF. Molecular Endoscopy for the Diagnosis and Therapeutic Monitoring of Colorectal Cancer. Front Oncol 2022; 12:835256. [PMID: 35280747 PMCID: PMC8913894 DOI: 10.3389/fonc.2022.835256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer related death in the western world. Its successful treatment requires early detection and removal of precursor lesions as well as individualized treatment of advanced disease. During recent years, molecular imaging techniques have shown promising results to improve current clinical practice. For instance, molecular endoscopy resulted in higher detection rates of precursors in comparison to conventional endoscopy in preclinical and clinical studies. Molecular confocal endomicroscopy allowed a further classification of suspect lesions as well as the prediction and monitoring of the therapeutic response. In this review, we summarize recent achievements for molecular imaging of CRC in preclinical studies, initial clinical trials and the remaining challenges for future translation into clinical practice.
Collapse
Affiliation(s)
- Maximilian J Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Zhu G, Wu Z, Lui S, Hu N, Wu M. Advances in Imaging Modalities and Contrast Agents for the Early Diagnosis of Colorectal Cancer. J Biomed Nanotechnol 2021; 17:558-581. [PMID: 35057884 DOI: 10.1166/jbn.2021.3064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Colorectal cancer is one of the most common gastrointestinal cancers worldwide. The mortality rate of colorectal cancer has declined by more than 20% due to the rapid development of early diagnostic techniques and effective treatment. At present, there are many diagnostic modalities
available for the evaluation of colorectal cancer, such as the carcinoembryonic antigen test, the fecal occult blood test, endoscopy, X-ray barium meal, computed tomography, magnetic resonance imaging, and radionuclide examination. Sensitive and specific imaging modalities have played an increasingly
important role in the diagnosis of colorectal cancer following the rapid development of novel contrast agents. This review discusses the applications and challenges of different imaging techniques and contrast agents applied to detect colorectal cancer, for the purpose of the early diagnosis
and treatment of patients with colorectal cancer.
Collapse
Affiliation(s)
- Guannan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zijun Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Na Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol 2020; 26:1394-1426. [PMID: 32308343 PMCID: PMC7152519 DOI: 10.3748/wjg.v26.i13.1394] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed malignancy among both sexes in the United States as well as in the European Union. While the incidence and mortality rates in western, high developed countries are declining, reflecting the success of screening programs and improved treatment regimen, a rise of the overall global CRC burden can be observed due to lifestyle changes paralleling an increasing human development index. Despite a growing insight into the biology of CRC and many therapeutic improvements in the recent decades, preclinical in vivo models are still indispensable for the development of new treatment approaches. Since the development of carcinogen-induced rodent models for CRC more than 80 years ago, a plethora of animal models has been established to study colon cancer biology. Despite tenuous invasiveness and metastatic behavior, these models are useful for chemoprevention studies and to evaluate colitis-related carcinogenesis. Genetically engineered mouse models (GEMM) mirror the pathogenesis of sporadic as well as inherited CRC depending on the specific molecular pathways activated or inhibited. Although the vast majority of CRC GEMM lack invasiveness, metastasis and tumor heterogeneity, they still have proven useful for examination of the tumor microenvironment as well as systemic immune responses; thus, supporting development of new therapeutic avenues. Induction of metastatic disease by orthotopic injection of CRC cell lines is possible, but the so generated models lack genetic diversity and the number of suited cell lines is very limited. Patient-derived xenografts, in contrast, maintain the pathological and molecular characteristics of the individual patient’s CRC after subcutaneous implantation into immunodeficient mice and are therefore most reliable for preclinical drug development – even in comparison to GEMM or cell line-based analyses. However, subcutaneous patient-derived xenograft models are less suitable for studying most aspects of the tumor microenvironment and anti-tumoral immune responses. The authors review the distinct mouse models of CRC with an emphasis on their clinical relevance and shed light on the latest developments in the field of preclinical CRC models.
Collapse
Affiliation(s)
- Florian Bürtin
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Christina S Mullins
- Department of Thoracic Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
5
|
Schneider C, Johnson SP, Gurusamy K, Cook RJ, Desjardins AE, Hawkes DJ, Davidson BR, Walker-Samuel S. Identification of liver metastases with probe-based confocal laser endomicroscopy at two excitation wavelengths. Lasers Surg Med 2017; 49:280-292. [PMID: 27990658 PMCID: PMC5396307 DOI: 10.1002/lsm.22617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Metastasis of colorectal cancer to the liver is the most common indication for hepatic resection in a western population. Incomplete excision of malignancy due to residual microscopic disease normally results in worse patient outcome. Therefore, a method aiding in the real time discrimination of normal and malignant tissue on a microscopic level would be of benefit. MATERIAL AND METHODS The ability of fluorescent probe-based confocal laser endomicroscopy (pCLE) to identify normal and malignant liver tissue was evaluated in an orthotopic murine model of colorectal cancer liver metastasis (CRLM). To maximise information yield, two clinical fluorophores, fluorescein and indocyanine green (ICG) were injected and imaged in a dual wavelength approach (488 and 660 nm, respectively). Visual tissue characteristics on pCLE examination were compared with histological features. Fluorescence intensity in both tissues was statistically analysed to elucidate if this can be used to differentiate between normal and malignant tissue. RESULTS Fluorescein (488 nm) enabled good visualisation of normal and CRLM tissue, whereas ICG (660 nm) visualisation was limited to normal liver tissue only. Fluorescence intensity in areas of CRLM was typically 53-100% lower than normal hepatic parenchyma. Using general linear mixed modelling and receiver operating characteristic analysis, high fluorescence intensity was found to be statistically more likely in normal hepatic tissue. CONCLUSION Real time discrimination between normal liver parenchyma and metastatic tissue with pCLE examination of fluorescein and ICG is feasible. Employing two (rather than a single) fluorophores allows a combination of qualitative and quantitative characteristics to be used to distinguish between hepatic parenchyma and CRLM. Lasers Surg. Med. 49:280-292, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Crispin Schneider
- Division of Surgery & Interventional Science, University College London, Floor 9, Royal Free Hospital, London, NW3 2QG, UK
| | - Sean P Johnson
- UCL Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Kurinchi Gurusamy
- Division of Surgery & Interventional Science, University College London, Floor 9, Royal Free Hospital, London, NW3 2QG, UK
| | - Richard J Cook
- Department of Tissue Engineering and Biophotonics, King's College London, Dental Institute-Central Office, Floor 18, Guy's Tower, Guy's Hospital, London, SE1 9RT, UK
| | - Adrien E Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK
| | - David J Hawkes
- Centre for Medical Image Computing, University College London, The Front Engineering Building, Floor 3, Malet Place, London, WC1E 7JE, UK
| | - Brian R Davidson
- Division of Surgery & Interventional Science, University College London, Floor 9, Royal Free Hospital, London, NW3 2QG, UK
| | - Simon Walker-Samuel
- UCL Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| |
Collapse
|
6
|
Sewda K, Coppola D, Enkemann S, Yue B, Kim J, Lopez AS, Wojtkowiak JW, Stark VE, Morse B, Shibata D, Vignesh S, Morse DL. Cell-surface markers for colon adenoma and adenocarcinoma. Oncotarget 2017; 7:17773-89. [PMID: 26894861 PMCID: PMC4951249 DOI: 10.18632/oncotarget.7402] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/24/2016] [Indexed: 12/26/2022] Open
Abstract
Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC.
Collapse
Affiliation(s)
- Kamini Sewda
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Steven Enkemann
- Department of Molecular Genomics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Binglin Yue
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jongphil Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Alexis S Lopez
- Department of Tissue Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jonathan W Wojtkowiak
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Valerie E Stark
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Brian Morse
- Department of Diagnostic Imaging, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - David Shibata
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shivakumar Vignesh
- Division of Gastroenterology and Hepatology, SUNY Health Sciences Center at Brooklyn, Brooklyn, NY 11203, USA
| | - David L Morse
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
7
|
Zou J, Pyykkö I, Hyttinen J. Inner ear barriers to nanomedicine-augmented drug delivery and imaging. J Otol 2016; 11:165-177. [PMID: 29937826 PMCID: PMC6002620 DOI: 10.1016/j.joto.2016.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 02/08/2023] Open
Abstract
There are several challenges to inner ear drug delivery and imaging due to the existence of tight biological barriers to the target structure and the dense bone surrounding it. Advances in imaging and nanomedicine may provide knowledge for overcoming the existing limitations to both the diagnosis and treatment of inner ear diseases. Novel techniques have improved the efficacy of drug delivery and targeting to the inner ear, as well as the quality and accuracy of imaging this structure. In this review, we will describe the pathways and biological barriers of the inner ear regarding drug delivery, the beneficial applications and limitations of the imaging techniques available for inner ear research, the behavior of engineered nanomaterials in inner ear applications, and future perspectives for nanomedicine-based inner ear imaging.
Collapse
Affiliation(s)
- Jing Zou
- Department of Otolaryngology – Head and Neck Surgery, Center for Otolaryngology – Head & Neck Surgery of Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
- Hearing and Balance Research Unit, Field of Otolaryngology, School of Medicine, University of Tampere, Tampere, Finland
| | - Ilmari Pyykkö
- Hearing and Balance Research Unit, Field of Otolaryngology, School of Medicine, University of Tampere, Tampere, Finland
| | - Jari Hyttinen
- Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
8
|
Maki H, Kawaguchi Y, Arita J, Akamatsu N, Kaneko J, Sakamoto Y, Hasegawa K, Harihara Y, Kokudo N. Real-time confocal laser endomicroscopic evaluation of primary liver cancer based on human liver autofluorescence. J Surg Oncol 2016; 115:151-157. [DOI: 10.1002/jso.24491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Harufumi Maki
- Hepato-Biliary-Pancreatic Surgery Division; and Artificial Organ and Transplantation Division; Department of Surgery; Graduate School of Medicine; The University of Tokyo; Bunkyo-ku Tokyo Japan
- Department of Surgery; NTT Medical Center Tokyo; Shinagawa-ku Tokyo Japan
| | - Yoshikuni Kawaguchi
- Hepato-Biliary-Pancreatic Surgery Division; and Artificial Organ and Transplantation Division; Department of Surgery; Graduate School of Medicine; The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Junichi Arita
- Hepato-Biliary-Pancreatic Surgery Division; and Artificial Organ and Transplantation Division; Department of Surgery; Graduate School of Medicine; The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Nobuhisa Akamatsu
- Hepato-Biliary-Pancreatic Surgery Division; and Artificial Organ and Transplantation Division; Department of Surgery; Graduate School of Medicine; The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Junichi Kaneko
- Hepato-Biliary-Pancreatic Surgery Division; and Artificial Organ and Transplantation Division; Department of Surgery; Graduate School of Medicine; The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Yoshihiro Sakamoto
- Hepato-Biliary-Pancreatic Surgery Division; and Artificial Organ and Transplantation Division; Department of Surgery; Graduate School of Medicine; The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division; and Artificial Organ and Transplantation Division; Department of Surgery; Graduate School of Medicine; The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Yasushi Harihara
- Department of Surgery; NTT Medical Center Tokyo; Shinagawa-ku Tokyo Japan
| | - Norihiro Kokudo
- Hepato-Biliary-Pancreatic Surgery Division; and Artificial Organ and Transplantation Division; Department of Surgery; Graduate School of Medicine; The University of Tokyo; Bunkyo-ku Tokyo Japan
| |
Collapse
|