1
|
Manafi-Farid R, Askari E, Shiri I, Pirich C, Asadi M, Khateri M, Zaidi H, Beheshti M. [ 18F]FDG-PET/CT radiomics and artificial intelligence in lung cancer: Technical aspects and potential clinical applications. Semin Nucl Med 2022; 52:759-780. [PMID: 35717201 DOI: 10.1053/j.semnuclmed.2022.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Molecular imaging using [18F]fluorodeoxyglucose Positron Emission Tomography and/or Computed Tomography ([18F]FDG-PET/CT) plays an essential role in the diagnosis, evaluation of response to treatment, and prediction of outcomes. The images are evaluated using qualitative and conventional quantitative indices. However, there is far more information embedded in the images, which can be extracted by sophisticated algorithms. Recently, the concept of uncovering and analyzing the invisible data extracted from medical images, called radiomics, is gaining more attention. Currently, [18F]FDG-PET/CT radiomics is growingly evaluated in lung cancer to discover if it enhances the diagnostic performance or implication of [18F]FDG-PET/CT in the management of lung cancer. In this review, we provide a short overview of the technical aspects, as they are discussed in different articles of this special issue. We mainly focus on the diagnostic performance of the [18F]FDG-PET/CT-based radiomics and the role of artificial intelligence in non-small cell lung cancer, impacting the early detection, staging, prediction of tumor subtypes, biomarkers, and patient's outcomes.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Emran Askari
- Department of Nuclear Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mahboobeh Asadi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Khateri
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland; Geneva University Neurocenter, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
2
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 1, Supradiaphragmatic Cancers. Diagnostics (Basel) 2022; 12:1329. [PMID: 35741138 PMCID: PMC9221970 DOI: 10.3390/diagnostics12061329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Radiomics is an upcoming field in nuclear oncology, both promising and technically challenging. To summarize the already undertaken work on supradiaphragmatic neoplasia and assess its quality, we performed a literature search in the PubMed database up to 18 February 2022. Inclusion criteria were: studies based on human data; at least one specified tumor type; supradiaphragmatic malignancy; performing radiomics on PET imaging. Exclusion criteria were: studies only based on phantom or animal data; technical articles without a clinically oriented question; fewer than 30 patients in the training cohort. A review database containing PMID, year of publication, cancer type, and quality criteria (number of patients, retrospective or prospective nature, independent validation cohort) was constructed. A total of 220 studies met the inclusion criteria. Among them, 119 (54.1%) studies included more than 100 patients, 21 studies (9.5%) were based on prospectively acquired data, and 91 (41.4%) used an independent validation set. Most studies focused on prognostic and treatment response objectives. Because the textural parameters and methods employed are very different from one article to another, it is complicated to aggregate and compare articles. New contributions and radiomics guidelines tend to help improving quality of the reported studies over the years.
Collapse
Affiliation(s)
- David Morland
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
3
|
Bouron C, Mathie C, Seegers V, Morel O, Jézéquel P, Lasla H, Guillerminet C, Girault S, Lacombe M, Sher A, Lacoeuille F, Patsouris A, Testard A. Prognostic Value of Metabolic, Volumetric and Textural Parameters of Baseline [ 18F]FDG PET/CT in Early Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14030637. [PMID: 35158904 PMCID: PMC8833829 DOI: 10.3390/cancers14030637] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The aim of this study was to evaluate PET/CT parameters to determine different prognostic groups in TNBC, in order to select patients with a high risk of relapse, for whom therapeutic escalation can be considered. We have demonstrated that the MTV, TLG and entropy of the primary breast lesion could be of interest to predict the prognostic outcome of TNBC patients. Abstract (1) Background: triple-negative breast cancer (TNBC) remains a clinical and therapeutic challenge primarily affecting young women with poor prognosis. TNBC is currently treated as a single entity but presents a very diverse profile in terms of prognosis and response to treatment. Positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose ([18F]FDG) is gaining importance for the staging of breast cancers. TNBCs often show high [18F]FDG uptake and some studies have suggested a prognostic value for metabolic and volumetric parameters, but no study to our knowledge has examined textural features in TNBC. The objective of this study was to evaluate the association between metabolic, volumetric and textural parameters measured at the initial [18F]FDG PET/CT and disease-free survival (DFS) and overall survival (OS) in patients with nonmetastatic TBNC. (2) Methods: all consecutive nonmetastatic TNBC patients who underwent a [18F]FDG PET/CT examination upon diagnosis between 2012 and 2018 were retrospectively included. The metabolic and volumetric parameters (SUVmax, SUVmean, SUVpeak, MTV, and TLG) and the textural features (entropy, homogeneity, SRE, LRE, LGZE, and HGZE) of the primary tumor were collected. (3) Results: 111 patients were enrolled (median follow-up: 53.6 months). In the univariate analysis, high TLG, MTV and entropy values of the primary tumor were associated with lower DFS (p = 0.008, p = 0.006 and p = 0.025, respectively) and lower OS (p = 0.002, p = 0.001 and p = 0.046, respectively). The discriminating thresholds for two-year DFS were calculated as 7.5 for MTV, 55.8 for TLG and 2.6 for entropy. The discriminating thresholds for two-year OS were calculated as 9.3 for MTV, 57.4 for TLG and 2.67 for entropy. In the multivariate analysis, lymph node involvement in PET/CT was associated with lower DFS (p = 0.036), and the high MTV of the primary tumor was correlated with lower OS (p = 0.014). (4) Conclusions: textural features associated with metabolic and volumetric parameters of baseline [18F]FDG PET/CT have a prognostic value for identifying high-relapse-risk groups in early TNBC patients.
Collapse
Affiliation(s)
- Clément Bouron
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
- Department of Nuclear Medicine, University Hospital of Angers, 4 rue Larrey, 49100 Angers, France;
- Correspondence:
| | - Clara Mathie
- Department of Medical Oncology, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (C.M.); (A.P.)
| | - Valérie Seegers
- Research and Statistics Department, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France;
| | - Olivier Morel
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| | - Pascal Jézéquel
- Omics Data Science Unit, ICO Pays de la Loire, Bd Jacques Monod, CEDEX, 44805 Saint-Herblain, France; (P.J.); (H.L.)
- CRCINA, UMR 1232 INSERM, Université de Nantes, Université d’Angers, Institut de Recherche en Santé, 8 Quai Moncousu—BP 70721, CEDEX 1, 44007 Nantes, France
| | - Hamza Lasla
- Omics Data Science Unit, ICO Pays de la Loire, Bd Jacques Monod, CEDEX, 44805 Saint-Herblain, France; (P.J.); (H.L.)
| | - Camille Guillerminet
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
- Department of Medical Physics, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France
| | - Sylvie Girault
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| | - Marie Lacombe
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| | - Avigaelle Sher
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| | - Franck Lacoeuille
- Department of Nuclear Medicine, University Hospital of Angers, 4 rue Larrey, 49100 Angers, France;
- CRCINA, University of Nantes and Angers, INSERM UMR1232 équipe 17, 49055 Angers, France
| | - Anne Patsouris
- Department of Medical Oncology, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (C.M.); (A.P.)
- INSERM UMR1232 équipe 12, 49055 Angers, France
| | - Aude Testard
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| |
Collapse
|
4
|
Guo H, Xu K, Duan G, Wen L, He Y. Progress and future prospective of FDG-PET/CT imaging combined with optimized procedures in lung cancer: toward precision medicine. Ann Nucl Med 2022; 36:1-14. [PMID: 34727331 DOI: 10.1007/s12149-021-01683-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
With a 5-year overall survival of approximately 20%, lung cancer has always been the number one cancer-specific killer all over the world. As a fusion of positron emission computed tomography (PET) and computed tomography (CT), PET/CT has revolutionized cancer imaging over the past 20 years. In this review, we focused on the optimization of the function of 18F-flurodeoxyglucose (FDG)-PET/CT in diagnosis, prognostic prediction and therapy management of lung cancers by computer programs. FDG-PET/CT has demonstrated a surprising role in development of therapeutic biomarkers, prediction of therapeutic responses and long-term survival, which could be conducive to solving existing dilemmas. Meanwhile, novel tracers and optimized procedures are also developed to control the quality and improve the effect of PET/CT. With the continuous development of some new imaging agents and their clinical applications, application value of PET/CT has broad prospects in this area.
Collapse
Affiliation(s)
- Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
- School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Kandi Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
- School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Guangxin Duan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ling Wen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
- School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
5
|
Differentiation between non-small cell lung cancer and radiation pneumonitis after carbon-ion radiotherapy by 18F-FDG PET/CT texture analysis. Sci Rep 2021; 11:11509. [PMID: 34075072 PMCID: PMC8169739 DOI: 10.1038/s41598-021-90674-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
The differentiation of non-small cell lung cancer (NSCLC) and radiation pneumonitis (RP) is critically essential for selecting optimal clinical therapeutic strategies to manage post carbon-ion radiotherapy (CIRT) in patients with NSCLC. The aim of this study was to assess the ability of 18F-FDG PET/CT metabolic parameters and its textural image features to differentiate NSCLC from RP after CIRT to develop a differential diagnosis of malignancy and benign lesion. We retrospectively analyzed 18F-FDG PET/CT image data from 32 patients with histopathologically proven NSCLC who were scheduled to undergo CIRT and 31 patients diagnosed with RP after CIRT. The SUV parameters, metabolic tumor volume (MTV), total lesion glycolysis (TLG) as well as fifty-six texture parameters derived from seven matrices were determined using PETSTAT image-analysis software. Data were statistically compared between NSCLC and RP using Wilcoxon rank-sum tests. Diagnostic accuracy was assessed using receiver operating characteristics (ROC) curves. Several texture parameters significantly differed between NSCLC and RP (p < 0.05). The parameters that were high in areas under the ROC curves (AUC) were as follows: SUVmax, 0.64; GLRLM run percentage, 0.83 and NGTDM coarseness, 0.82. Diagnostic accuracy was improved using GLRLM run percentage or NGTDM coarseness compared with SUVmax (p < 0.01). The texture parameters of 18F-FDG uptake yielded excellent outcomes for differentiating NSCLC from radiation pneumonitis after CIRT, which outperformed SUV-based evaluation. In particular, GLRLM run percentage and NGTDM coarseness of 18F-FDG PET/CT images would be appropriate parameters that can offer high diagnostic accuracy.
Collapse
|
6
|
A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020380. [PMID: 33672285 PMCID: PMC7926413 DOI: 10.3390/diagnostics11020380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although many works have supported the utility of PET radiomics, several authors have raised concerns over the robustness and replicability of the results. This study aimed to perform a systematic review on the topic of PET radiomics and the used methodologies. Methods: PubMed was searched up to 15 October 2020. Original research articles based on human data specifying at least one tumor type and PET image were included, excluding those that apply only first-order statistics and those including fewer than 20 patients. Each publication, cancer type, objective and several methodological parameters (number of patients and features, validation approach, among other things) were extracted. Results: A total of 290 studies were included. Lung (28%) and head and neck (24%) were the most studied cancers. The most common objective was prognosis/treatment response (46%), followed by diagnosis/staging (21%), tumor characterization (18%) and technical evaluations (15%). The average number of patients included was 114 (median = 71; range 20–1419), and the average number of high-order features calculated per study was 31 (median = 26, range 1–286). Conclusions: PET radiomics is a promising field, but the number of patients in most publications is insufficient, and very few papers perform in-depth validations. The role of standardization initiatives will be crucial in the upcoming years.
Collapse
|
7
|
Preoperative Texture Analysis Using 11C-Methionine Positron Emission Tomography Predicts Survival after Surgery for Glioma. Diagnostics (Basel) 2021; 11:diagnostics11020189. [PMID: 33525709 PMCID: PMC7911154 DOI: 10.3390/diagnostics11020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Positron emission tomography with 11C-methionine (MET) is well established in the diagnostic work-up of malignant brain tumors. Texture analysis is a novel technique for extracting information regarding relationships among surrounding voxels, in order to quantify their inhomogeneity. This study evaluated whether the texture analysis of MET uptake has prognostic value for patients with glioma. METHODS We retrospectively analyzed adults with glioma who had undergone preoperative metabolic imaging at a single center. Tumors were delineated using a threshold of 1.3-fold of the mean standardized uptake value for the contralateral cortex, and then processed to calculate the texture features in glioma. RESULTS The study included 42 patients (median age: 56 years). The World Health Organization classifications were grade II (7 patients), grade III (17 patients), and grade IV (18 patients). Sixteen (16.1%) all-cause deaths were recorded during the median follow-up of 18.8 months. The univariate analyses revealed that overall survival (OS) was associated with age (hazard ratio (HR) 1.04, 95% confidence interval (CI) 1.01-1.08, p = 0.0093), tumor grade (HR 3.64, 95% CI 1.63-9.63, p = 0.0010), genetic status (p < 0.0001), low gray-level run emphasis (LGRE, calculated from the gray-level run-length matrix) (HR 2.30 × 1011, 95% CI 737.11-4.23 × 1019, p = 0.0096), and correlation (calculated from the gray-level co-occurrence matrix) (HR 5.17, 95% CI 1.07-20.93, p = 0.041). The multivariate analyses revealed OS was independently associated with LGRE and correlation. The survival curves were also significantly different (both log-rank p < 0.05). CONCLUSION Textural features obtained using preoperative MET positron emission tomography may compliment the semi-quantitative assessment for prognostication in glioma cases.
Collapse
|
8
|
Ji Y, Qiu Q, Fu J, Cui K, Chen X, Xing L, Sun X. Stage-Specific PET Radiomic Prediction Model for the Histological Subtype Classification of Non-Small-Cell Lung Cancer. Cancer Manag Res 2021; 13:307-317. [PMID: 33469373 PMCID: PMC7811450 DOI: 10.2147/cmar.s287128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose To investigate the impact of staging on differences in glucose metabolic heterogeneity between lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) by 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) textural analysis and to develop a stage-specific PET radiomic prediction model to distinguish lung ADC from SCC. Patients and Methods Patients who were histologically diagnosed with lung ADC or SCC and underwent pretreatment 18F-FDG PET/CT scans were retrospectively identified. Radiomic features were extracted from a semiautomatically outlined tumor region in the Chang-Gung Image Texture Analysis (CGITA) software package. The differences in radiomic parameters between lung ADC and SCC were compared stage-by-stage in 253 consecutive NSCLC patients with stages I to III disease. The least absolute shrinkage and selection operator (LASSO) algorithm was used for feature selection. A radiomic signature for each stage was subsequently constructed and evaluated. Then, an individual nomogram incorporating the radiomic signature and clinical risk factors was established and evaluated. The performance of the constructed models was assessed by receiver operating characteristic (ROC) curve analysis, and the nomogram was further validated by calibration curve analysis. Results The performance of the radiomic signature for distinguishing lung ADC and SCC in both the training and validation cohorts was good, with AUCs of 0.883, 0.854, and 0.895 in the training cohort and 0.932, 0.944, and 0.886 in the validation cohort for stages I, II, and III NSCLC, respectively. The radiomic-clinical nomogram integrating radiomic features with independent clinical predictors exhibited more favorable discriminative performance, with AUCs of 0.982, 0.963, and 0.979 in the training cohort and 0.989, 0.984, and 0.978 in the validation cohort for stages I, II, and III, respectively. Conclusion Differences in PET radiomic features between lung ADC and SCC varied in different stages. Stage-specific PET radiomic prediction models provided more favorable performance for discriminating the histological subtype of NSCLC.
Collapse
Affiliation(s)
- Yanlei Ji
- Department of Ultrasound Medicine, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China.,Department of Ultrasound Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, People's Republic of China
| | - Qingtao Qiu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, People's Republic of China
| | - Jing Fu
- Department of Ultrasound Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, People's Republic of China
| | - Kai Cui
- Department of PET/CT, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, People's Republic of China
| | - Xia Chen
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, People's Republic of China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, People's Republic of China
| | - Xiaorong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, People's Republic of China
| |
Collapse
|
9
|
Kimura M, Kato I, Ishibashi K, Sone Y, Nagao T, Umemura M. Texture Analysis Using Preoperative Positron Emission Tomography Images May Predict the Prognosis of Patients With Resectable Oral Squamous Cell Carcinoma. J Oral Maxillofac Surg 2020; 79:1168-1176. [PMID: 33428864 DOI: 10.1016/j.joms.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 11/17/2022]
Abstract
PURPOSE Texture analysis is a computer-assisted technique used to measure intratumoral heterogeneity, which is known to have important roles in cancer research. This study aimed to assess the potential prognostic values of textural features extracted from preoperative 18F-fluorodeoxyglucose positron emission tomography images in patients with resectable oral squamous cell carcinoma. PATIENTS AND METHODS This retrospective cohort study included patients with oral squamous cell carcinoma who underwent resection surgery. We extracted 31 textural indices from preoperative positron emission tomography images. Overall survival (OS) and disease-free survival (DFS) were chosen as the primary outcome variables, and the primary predictor variables were age, sex, primary tumor location, pathological T and N classification, histologic differentiation, resected margin, perineural and lymphovascular invasion, maximum standardized uptake value, and the 14 textural indices selected in the factor analysis. We analyzed OS and DFS using Kaplan-Meier curves, and the differences between survival curves were determined using a log-rank test. The independent prognostic factors were assessed using the Cox-proportional hazards model. RESULTS We enrolled 81 patients (median age, 67.3 years; range, 32 to 88 years). The median follow-up duration was 50.1 months (range, 6.3 to 133.7 months). The univariable and multivariable analyses revealed that higher entropy values (≥1.91) were associated with worse OS (hazard ratio, 21.49; 95% confidence interval, 1.36 to 340.71; P = .03) and DFS (hazard ratio, 50.69; 95% confidence interval, 5.23 to 491.18; P = .001). CONCLUSIONS This study showed that entropy is a statistically significant prognostic factor of both OS and DFS. Texture analysis using preoperative positron emission tomography images may contribute to risk stratification.
Collapse
Affiliation(s)
- Masashi Kimura
- Attending staff, Department of Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Isao Kato
- Radiologist, Department of Medical Technology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Kenichiro Ishibashi
- Chief surgeon, Department of Oral and Maxillofacial Surgery, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yasuhiro Sone
- Director, Department of Diagnostic Radiology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Toru Nagao
- Professor, Department of Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Masahiro Umemura
- Director, Department of Oral and Maxillofacial Surgery, Ogaki Municipal Hospital, Ogaki, Japan
| |
Collapse
|
10
|
Mapelli P, Partelli S, Salgarello M, Doraku J, Pasetto S, Rancoita PMV, Muffatti F, Bettinardi V, Presotto L, Andreasi V, Gianolli L, Picchio M, Falconi M. Dual tracer 68Ga-DOTATOC and 18F-FDG PET/computed tomography radiomics in pancreatic neuroendocrine neoplasms: an endearing tool for preoperative risk assessment. Nucl Med Commun 2020; 41:896-905. [PMID: 32796478 DOI: 10.1097/mnm.0000000000001236] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM To explore the potentiality of radiomics analysis, performed on Ga-DOTATOC and fluorine-18-fluorodeoxyglucose (F-FDG) PET/computed tomography (CT) images, in predicting tumour aggressiveness and outcome in patients candidate to surgery for pancreatic neuroendocrine neoplasms (PanNENs). PATIENTS AND METHODS Retrospective study including 61 patients who underwent Ga-DOTATOC and F-FDG PET/CT before surgery for PanNEN. Semiquantitative variables [SUVmax and somatostatin receptor density (SRD) for Ga-DOTATOC PET; SUVmax and MTV for F-FDG PET] and texture features [intensity variability, size zone variability (SZV), zone percentage, entropy; homogeneity, dissimilarity and coefficient of variation (Co-V)] have been analysed to evaluate their possible role in predicting tumour characteristics. Principal component analysis (PCA) was firstly performed and then multiple regression analyses were performed by using the extracted principal components. RESULTS Regarding Ga-DOTATOC PET, SZV, entropy, intensity variability and SRD were predictive for tumour dimension. Regarding F-FDG PET, intensity variability, SZV, homogeneity, SUVmax and MTV were predictive for tumour dimension. Four principal components were extracted from PCA: PC1 correlated with all F-FDG variables, while PC2, PC3 and PC4 with Ga-DOTATOC variables. PC1 was the only significantly predicting angioinvasion (P = 0.0222); PC4 was the only one significantly predicting lymph nodal involvement (P = 0.0151). All principal components except PC4 significantly predicted tumour dimension (P <0.0001 for PC1, P = 0.0016 for PC2 and P < 0.0001 for PC3). Co-V from Ga-DOTATOC PET/CT was predictive of the outcome. CONCLUSION Specific texture features derived from preoperative Ga-DOTATOC and F-FDG PET/CT could noninvasively predict specific tumour characteristics and patients' outcome, delineating the potential role of dual tracer technique and texture analysis in the risk assessment of patients with PanNENs.
Collapse
Affiliation(s)
- Paola Mapelli
- Vita-Salute San Raffaele University
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute
| | - Stefano Partelli
- Vita-Salute San Raffaele University
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Centre, IRCCS San Raffaele Scientific Institute, Milan
| | - Matteo Salgarello
- Department of Nuclear Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar
| | - Joniada Doraku
- Department of Nuclear Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar
| | - Stefano Pasetto
- Department of Nuclear Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar
| | - Paola M V Rancoita
- University Centre of Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Muffatti
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Centre, IRCCS San Raffaele Scientific Institute, Milan
| | | | - Luca Presotto
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute
| | - Valentina Andreasi
- Vita-Salute San Raffaele University
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Centre, IRCCS San Raffaele Scientific Institute, Milan
| | - Luigi Gianolli
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute
| | - Maria Picchio
- Vita-Salute San Raffaele University
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute
| | - Massimo Falconi
- Vita-Salute San Raffaele University
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Centre, IRCCS San Raffaele Scientific Institute, Milan
| |
Collapse
|
11
|
Harmon S, Seder CW, Chen S, Traynor A, Jeraj R, Blasberg JD. Quantitative FDG PET/CT may help risk-stratify early-stage non-small cell lung cancer patients at risk for recurrence following anatomic resection. J Thorac Dis 2019; 11:1106-1116. [PMID: 31179052 PMCID: PMC6531752 DOI: 10.21037/jtd.2019.04.46] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/03/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Preoperative identification of non-small cell lung cancer (NSCLC) patients at risk for disease recurrence has proven unreliable. The extraction of quantitative metrics from imaging based on tumor intensity and texture may enhanced disease characterization. This study evaluated tumor-specific 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computerized tomography (PET/CT) uptake patterns and their association with disease recurrence in early-stage NSCLC. METHODS Sixty-four stage I/II NSCLC patients who underwent anatomic resection between 2001 and 2014 were examined. Pathologically or radiographic confirmed disease recurrence within 5 years of resection comprised the study group. Quantitative imaging metrics were extracted within the primary tumor volume. Squamous cell carcinoma (SCC) (N=27) and adenocarcinoma (AC) (N=41) patients were compared using a Wilcoxon signed-rank test. Associations between imaging and clinical variables with 5-year disease-free survival (DFS) and overall survival (OS) were evaluated by Cox proportional-hazards regression. RESULTS Clinical and pathologic characteristics were similar between recurrence (N=34) and patients achieving 5-year DFS (N=30). Standardized uptake value (SUV)max and SUVmean varied significantly by histology, with SCC demonstrating higher uptake intensity and heterogeneity patterns. Entropy-grey-level co-occurrence matrix (GLCM) was a significant univariate predictor of DFS (HR =0.72, P=0.04) and OS (HR =0.65, P=0.007) independent of histology. Texture features showed higher predictive ability for DFS in SCC than AC. Pathologic node status and staging classification were the strongest clinical predictors of DFS, independent of histology. CONCLUSIONS Several imaging metrics correlate with increased risk for disease recurrence in early-stage NSCLC. The predictive ability of imaging was strongest when patients are stratified by histology. The incorporation of 18F-FDG PET/CT texture features with preoperative risk factors and tumor characteristics may improve identification of high-risk patients.
Collapse
Affiliation(s)
- Stephanie Harmon
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Christopher W. Seder
- Department of Thoracic and Cardiovascular Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Song Chen
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
- Department of Nuclear Medicine, The 1st Hospital of China Medical University, Shenyang 110016, China
| | - Anne Traynor
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Robert Jeraj
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|