1
|
Hoffmann E, Gerwing M, Krähling T, Hansen U, Kronenberg K, Masthoff M, Geyer C, Höltke C, Wachsmuth L, Schinner R, Hoerr V, Heindel W, Karst U, Eisenblätter M, Maus B, Helfen A, Faber C, Wildgruber M. Vascular response patterns to targeted therapies in murine breast cancer models with divergent degrees of malignancy. Breast Cancer Res 2023; 25:56. [PMID: 37221619 DOI: 10.1186/s13058-023-01658-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Response assessment of targeted cancer therapies is becoming increasingly challenging, as it is not adequately assessable with conventional morphological and volumetric analyses of tumor lesions. The tumor microenvironment is particularly constituted by tumor vasculature which is altered by various targeted therapies. The aim of this study was to noninvasively assess changes in tumor perfusion and vessel permeability after targeted therapy in murine models of breast cancer with divergent degrees of malignancy. METHODS Low malignant 67NR or highly malignant 4T1 tumor-bearing mice were treated with either the multi-kinase inhibitor sorafenib or immune checkpoint inhibitors (ICI, combination of anti-PD1 and anti-CTLA4). Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with i.v. injection of albumin-binding gadofosveset was conducted on a 9.4 T small animal MRI. Ex vivo validation of MRI results was achieved by transmission electron microscopy, immunohistochemistry and laser ablation-inductively coupled plasma-mass spectrometry. RESULTS Therapy-induced changes in tumor vasculature differed between low and highly malignant tumors. Sorafenib treatment led to decreased tumor perfusion and endothelial permeability in low malignant 67NR tumors. In contrast, highly malignant 4T1 tumors demonstrated characteristics of a transient window of vascular normalization with an increase in tumor perfusion and permeability early after therapy initiation, followed by decreased perfusion and permeability parameters. In the low malignant 67NR model, ICI treatment also mediated vessel-stabilizing effects with decreased tumor perfusion and permeability, while ICI-treated 4T1 tumors exhibited increasing tumor perfusion with excessive vascular leakage. CONCLUSION DCE-MRI enables noninvasive assessment of early changes in tumor vasculature after targeted therapies, revealing different response patterns between tumors with divergent degrees of malignancy. DCE-derived tumor perfusion and permeability parameters may serve as vascular biomarkers that allow for repetitive examination of response to antiangiogenic treatment or immunotherapy.
Collapse
Grants
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
Collapse
Affiliation(s)
- Emily Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany.
| | - Mirjam Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Tobias Krähling
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University of Münster, Münster, Germany
| | - Katharina Kronenberg
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic of Radiology, University of Münster, Münster, Germany
| | | | - Carsten Höltke
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Regina Schinner
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Verena Hoerr
- Clinic of Radiology, University of Münster, Münster, Germany
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Walter Heindel
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Michel Eisenblätter
- Clinic of Radiology, University of Münster, Münster, Germany
- Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, University of Bielefeld, Bielefeld, Germany
| | - Bastian Maus
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Anne Helfen
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Moritz Wildgruber
- Clinic of Radiology, University of Münster, Münster, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Hoffmann E, Gerwing M, Niland S, Niehoff R, Masthoff M, Geyer C, Wachsmuth L, Wilken E, Höltke C, Heindel WL, Hoerr V, Schinner R, Berger P, Vogl T, Eble JA, Maus B, Helfen A, Wildgruber M, Faber C. Profiling specific cell populations within the inflammatory tumor microenvironment by oscillating-gradient diffusion-weighted MRI. J Immunother Cancer 2023; 11:jitc-2022-006092. [PMID: 36918222 PMCID: PMC10016257 DOI: 10.1136/jitc-2022-006092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The inflammatory tumor microenvironment (TME) is formed by various immune cells, being closely associated with tumorigenesis. Especially, the interaction between tumor-infiltrating T-cells and macrophages has a crucial impact on tumor progression and metastatic spread. The purpose of this study was to investigate whether oscillating-gradient diffusion-weighted MRI (OGSE-DWI) enables a cell size-based discrimination between different cell populations of the TME. METHODS Sine-shaped OGSE-DWI was combined with the Imaging Microstructural Parameters Using Limited Spectrally Edited Diffusion (IMPULSED) approach to measure microscale diffusion distances, here relating to cell sizes. The accuracy of IMPULSED-derived cell radii was evaluated using in vitro spheroid models, consisting of either pure cancer cells, macrophages, or T-cells. Subsequently, in vivo experiments aimed to assess changes within the TME and its specific immune cell composition in syngeneic murine breast cancer models with divergent degrees of malignancy (4T1, 67NR) during tumor progression, clodronate liposome-mediated depletion of macrophages, and immune checkpoint inhibitor (ICI) treatment. Ex vivo analysis of IMPULSED-derived cell radii was conducted by immunohistochemical wheat germ agglutinin staining of cell membranes, while intratumoral immune cell composition was analyzed by CD3 and F4/80 co-staining. RESULTS OGSE-DWI detected mean cell radii of 8.8±1.3 µm for 4T1, 8.2±1.4 µm for 67NR, 13.0±1.7 for macrophage, and 3.8±1.8 µm for T-cell spheroids. While T-cell infiltration during progression of 4T1 tumors was observed by decreasing mean cell radii from 9.7±1.0 to 5.0±1.5 µm, increasing amount of intratumoral macrophages during progression of 67NR tumors resulted in increasing mean cell radii from 8.9±1.2 to 12.5±1.1 µm. After macrophage depletion, mean cell radii decreased from 6.3±1.7 to 4.4±0.5 µm. T-cell infiltration after ICI treatment was captured by decreasing mean cell radii in both tumor models, with more pronounced effects in the 67NR tumor model. CONCLUSIONS OGSE-DWI provides a versatile tool for non-invasive profiling of the inflammatory TME by assessing the dominating cell type T-cells or macrophages.
Collapse
Affiliation(s)
- Emily Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Mirjam Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Rolf Niehoff
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic of Radiology, University of Münster, Münster, Germany
| | | | - Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Enrica Wilken
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Carsten Höltke
- Clinic of Radiology, University of Münster, Münster, Germany
| | | | - Verena Hoerr
- Clinic of Radiology, University of Münster, Münster, Germany.,Department of Internal Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - Regina Schinner
- Department of Radiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Philipp Berger
- Institute of Immunology, University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Bastian Maus
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Anne Helfen
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Moritz Wildgruber
- Clinic of Radiology, University of Münster, Münster, Germany.,Department of Radiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Masthoff M, Freppon FN, Zondler L, Wilken E, Wachsmuth L, Niemann S, Schwarz C, Fredrich I, Havlas A, Block H, Gerwing M, Helfen A, Heindel W, Zarbock A, Wildgruber M, Faber C. Resolving immune cells with patrolling behaviour by magnetic resonance time-lapse single cell tracking. EBioMedicine 2021; 73:103670. [PMID: 34742131 PMCID: PMC8581510 DOI: 10.1016/j.ebiom.2021.103670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Immune cells show distinct motion patterns that change upon inflammatory stimuli. Monocytes patrol the vasculature to screen for pathogens, thereby exerting an early task of innate immunity. Here, we aimed to non-invasively analyse single patrolling monocyte behaviour upon inflammatory stimuli. METHODS We used time-lapse Magnetic Resonance Imaging (MRI) of the murine brain to dynamically track single patrolling monocytes within the circulation distant to the actual site of inflammation in different inflammatory conditions, ranging from a subcutaneous pellet model to severe peritonitis and bacteraemia. FINDINGS Single patrolling immune cells with a velocity of <1 µm/s could be detected and followed dynamically using time-lapse MRI. We show, that due to local and systemic stimuli the slowly patrolling behaviour of monocytes is altered systemically and differs with type, duration and strength of the underlying stimulus. INTERPRETATION Using time-lapse MRI, it is now possible to investigate the behaviour of single circulating monocytes over the course of the systemic immune response. Monocyte patrolling behaviour is altered systemically even before the onset of clinical symptoms distant to and depending on the underlying inflammatory stimulus. FUNDING This study was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - CRC 1009 - 194468054 to AZ, CF and - CRC 1450 - 431460824 to MM, SN, HB, AZ, CF, the Joachim Herz Foundation (Add-on Fellowship for Interdisciplinary Life Sciences to MM), the Interdisciplinary Centre for Clinical Research (IZKF, core unit PIX) and the Medical Faculty of the University of Muenster (MEDK fellowship to FF and IF).
Collapse
Affiliation(s)
- Max Masthoff
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany.
| | - Felix Noah Freppon
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Lisa Zondler
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Enrica Wilken
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Lydia Wachsmuth
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Christian Schwarz
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Ina Fredrich
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Asli Havlas
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Helena Block
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Mirjam Gerwing
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Anne Helfen
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Walter Heindel
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Moritz Wildgruber
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany; Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Cornelius Faber
- Clinic for Radiology, Translational Research Imaging Centre, University Hospital Muenster, Muenster, Germany
| |
Collapse
|