1
|
Harker SA, Preissner M, Chang RY, Trevascus D, Liu C, Wang Y, Chow MYT, Cmielewski P, Reyne N, How YY, Pollock JA, Klein M, Wright CA, Dubsky S, Donnelley M, Chan HK, Morgan KS. Using X-ray velocimetry to measure lung function and assess the efficacy of a pseudomonas aeruginosa bacteriophage therapy for cystic fibrosis. Sci Rep 2024; 14:29727. [PMID: 39614107 DOI: 10.1038/s41598-024-80326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024] Open
Abstract
Phase contrast x-ray imaging (PCXI) provides high-contrast images of weakly-attenuating structures like the lungs. PCXI, when paired with 4D X-ray Velocimetry (XV), can measure regional lung function and non-invasively assess the efficacy of emerging therapeutics. Bacteriophage therapy is an emerging antimicrobial treatment option for lung diseases such as cystic fibrosis (CF), particularly with increasing rates of multi-drug-resistant infections. Current efficacy assessment in animal models is highly invasive, typically requiring histological assessment. We aim to use XV techniques as non-invasive alternatives to demonstrate efficacy of bacteriophage therapy for treating Pseudomonas aeruginosa CF lung infections, measuring functional changes post-treatment. Time-resolved in vivo PCXI-CT scans of control, Pseudomonas-infected, and phage-treated mouse lungs were taken at the Australian Synchrotron Imaging and Medical Beamline. Using XV we measured local lung expansion and ventilation throughout the breath cycle, analysing the skew of the lung expansion distribution. CT images allowed visualisation of the projected air volume in the lungs, assessing structural lung damage. XV analysis demonstrated changes in lung expansion between infection and control groups, however there were no statistically significant differences between treated and placebo groups. In some cases where structural changes were not evident in the CT scans, XV successfully detected changes in lung function.
Collapse
Affiliation(s)
- Stephanie A Harker
- School of Clinical Sciences, Monash University, Melbourne, VIC, 3800, Australia.
| | - Melissa Preissner
- Faculty of Engineering, Monash University, Melbourne, VIC, 3800, Australia
| | - Rachel Yoon Chang
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David Trevascus
- School of Physics and Astronomy, Monash University, Melbourne, VIC, 3800, Australia
| | - Chengxi Liu
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2050, Australia
| | - Yuncheng Wang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2050, Australia
| | - Michael Y T Chow
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2050, Australia
- Department of Pharmaceutics, University College London, London, UK
| | - Patricia Cmielewski
- Adelaide Medical School, University of Adelaide, and Robinson Research Institute, Adelaide, SA, 5005, Australia
| | - Nicole Reyne
- Adelaide Medical School, University of Adelaide, and Robinson Research Institute, Adelaide, SA, 5005, Australia
| | - Ying Ying How
- School of Physics and Astronomy, Monash University, Melbourne, VIC, 3800, Australia
| | - James A Pollock
- School of Physics and Astronomy, Monash University, Melbourne, VIC, 3800, Australia
| | - Mitzi Klein
- ANSTO, Australian Synchrotron, Melbourne, VIC, 3168, Australia
| | | | - Stephen Dubsky
- Faculty of Engineering, Monash University, Melbourne, VIC, 3800, Australia
| | - Martin Donnelley
- Adelaide Medical School, University of Adelaide, and Robinson Research Institute, Adelaide, SA, 5005, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2050, Australia
| | - Kaye S Morgan
- School of Physics and Astronomy, Monash University, Melbourne, VIC, 3800, Australia
| |
Collapse
|
2
|
Glancy SB, Morris HD, Ho VB, Klarmann GJ. Optimal Agents for Visualizing Collagen Tissue Microarchitecture Using Contrast-Enhanced MicroCT. Pharmaceuticals (Basel) 2023; 16:1719. [PMID: 38139845 PMCID: PMC10747128 DOI: 10.3390/ph16121719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Micro-computed tomography (microCT) is a common tool for the visualization of the internal composition of organic tissues. Collagen comprises approximately 25-35% of the whole-body protein content in mammals, and the structure and arrangement of collagen fibers contribute significantly to the integrity of tissues. Collagen type I is also frequently used as a key structural component in tissue-engineered and bioprinted tissues. However, the imaging of collagenous tissues is limited by their inherently low X-ray attenuation, which makes them indistinguishable from most other soft tissues. An imaging contrast agent that selectively alters X-ray attenuation is thus essential to properly visualize collagenous tissue using a standard X-ray tube microCT scanner. This review compares various contrast-enhanced techniques reported in the literature for MicroCT visualization of collagen-based tissues. An ideal microCT contrast agent would meet the following criteria: (1) it diffuses through the tissue quickly; (2) it does not deform or impair the object being imaged; and (3) it provides sufficient image contrast for reliable visualization of the orientation of individual fibers within the collagen network. The relative benefits and disadvantages of each method are discussed. Lugol's solution (I3K), phosphotungstic acid (H3PW12O40), mercury(II) chloride (HgCl2), and Wells-Dawson polyoxometalates came closest to fitting the criteria. While none of the contrast agents discussed in the literature met all criteria, each one has advantages to consider in the context of specific lab capabilities and imaging priorities.
Collapse
Affiliation(s)
- Spencer B. Glancy
- San Antonio Uniformed Services Health Education Consortium, San Antonio, TX 78234, USA;
| | - Herman Douglas Morris
- School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (H.D.M.); (V.B.H.)
| | - Vincent B. Ho
- School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (H.D.M.); (V.B.H.)
- 4D Bio3 Center for Biotechnology, Uniformed Services University, Bethesda, MD 20814, USA
| | - George J. Klarmann
- 4D Bio3 Center for Biotechnology, Uniformed Services University, Bethesda, MD 20814, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| |
Collapse
|
3
|
Brombal L, Arfelli F, Menk RH, Rigon L, Brun F. PEPI Lab: a flexible compact multi-modal setup for X-ray phase-contrast and spectral imaging. Sci Rep 2023; 13:4206. [PMID: 36918574 PMCID: PMC10014955 DOI: 10.1038/s41598-023-30316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/21/2023] [Indexed: 03/15/2023] Open
Abstract
This paper presents a new flexible compact multi-modal imaging setup referred to as PEPI (Photon-counting Edge-illumination Phase-contrast imaging) Lab, which is based on the edge-illumination (EI) technique and a chromatic detector. The system enables both X-ray phase-contrast (XPCI) and spectral (XSI) imaging of samples on the centimeter scale. This work conceptually follows all the stages in its realization, from the design to the first imaging results. The setup can be operated in four different modes, i.e. photon-counting/conventional, spectral, double-mask EI, and single-mask EI, whereby the switch to any modality is fast, software controlled, and does not require any hardware modification or lengthy re-alignment procedures. The system specifications, ranging from the X-ray tube features to the mask material and aspect ratio, have been quantitatively studied and optimized through a dedicated Geant4 simulation platform, guiding the choice of the instrumentation. The realization of the imaging setup, both in terms of hardware and control software, is detailed and discussed with a focus on practical/experimental aspects. Flexibility and compactness (66 cm source-to-detector distance in EI) are ensured by dedicated motion stages, whereas spectral capabilities are enabled by the Pixirad-1/Pixie-III detector in combination with a tungsten anode X-ray source operating in the range 40-100 kVp. The stability of the system, when operated in EI, has been verified, and drifts leading to mask misalignment of less than 1 [Formula: see text]m have been measured over a period of 54 h. The first imaging results, one for each modality, demonstrate that the system fulfills its design requirements. Specifically, XSI tomographic images of an iodine-based phantom demonstrate the system's quantitativeness and sensibility to concentrations in the order of a few mg/ml. Planar XPCI images of a carpenter bee specimen, both in single and double-mask modes, demonstrate that refraction sensitivity (below 0.6 [Formula: see text]rad in double-mask mode) is comparable with other XPCI systems based on microfocus sources. Phase CT capabilities have also been tested on a dedicated plastic phantom, where the phase channel yielded a 15-fold higher signal-to-noise ratio with respect to attenuation.
Collapse
Affiliation(s)
- Luca Brombal
- Department of Physics, University of Trieste, 34127, Trieste, Italy
- Division of Trieste, National Institute for Nuclear Physics (INFN), 34127, Trieste, Italy
| | - Fulvia Arfelli
- Department of Physics, University of Trieste, 34127, Trieste, Italy
- Division of Trieste, National Institute for Nuclear Physics (INFN), 34127, Trieste, Italy
| | - Ralf Hendrik Menk
- Division of Trieste, National Institute for Nuclear Physics (INFN), 34127, Trieste, Italy.
- Elettra Sincrotrone Trieste S.C.p.A., 34149, Basovizza, TS, Italy.
| | - Luigi Rigon
- Department of Physics, University of Trieste, 34127, Trieste, Italy
- Division of Trieste, National Institute for Nuclear Physics (INFN), 34127, Trieste, Italy
| | - Francesco Brun
- Division of Trieste, National Institute for Nuclear Physics (INFN), 34127, Trieste, Italy
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| |
Collapse
|
4
|
Lioliou G, Roche i Morgó O, Marathe S, Wanelik K, Cipiccia S, Olivo A, Hagen CK. Cycloidal-spiral sampling for three-modal x-ray CT flyscans with two-dimensional phase sensitivity. Sci Rep 2022; 12:21336. [PMID: 36494470 PMCID: PMC9734192 DOI: 10.1038/s41598-022-25999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
We present a flyscan compatible acquisition scheme for three-modal X-Ray Computed Tomography (CT) with two-dimensional phase sensitivity. Our approach is demonstrated using a "beam tracking" setup, through which a sample's attenuation, phase (refraction) and scattering properties can be measured from a single frame, providing three complementary contrast channels. Up to now, such setups required the sample to be stepped at each rotation angle to sample signals at an adequate rate, to prevent resolution losses, anisotropic resolution, and under-sampling artefacts. However, the need for stepping necessitated a step-and-shoot implementation, which is affected by motors' overheads and increases the total scan time. By contrast, our proposed scheme, by which continuous horizontal and vertical translations of the sample are integrated with its rotation (leading to a "cycloidal-spiral" trajectory), is fully compatible with continuous scanning (flyscans). This leads to greatly reduced scan times while largely preserving image quality and isotropic resolution.
Collapse
Affiliation(s)
- G. Lioliou
- grid.83440.3b0000000121901201Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, London, WC1E 6BT UK
| | - O. Roche i Morgó
- grid.83440.3b0000000121901201Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, London, WC1E 6BT UK
| | - S. Marathe
- grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot, OX11 0DE UK
| | - K. Wanelik
- grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot, OX11 0DE UK
| | - S. Cipiccia
- grid.83440.3b0000000121901201Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, London, WC1E 6BT UK
| | - A. Olivo
- grid.83440.3b0000000121901201Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, London, WC1E 6BT UK
| | - C. K. Hagen
- grid.83440.3b0000000121901201Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, London, WC1E 6BT UK
| |
Collapse
|
5
|
Clear E, Grant RA, Carroll M, Brassey CA. A Review and Case Study of 3D Imaging Modalities for Female Amniote Reproductive Anatomy. Integr Comp Biol 2022; 62:icac027. [PMID: 35536568 PMCID: PMC10570564 DOI: 10.1093/icb/icac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances in non-invasive imaging methods have revitalised the field of comparative anatomy, and reproductive anatomy has been no exception. The reproductive systems of female amniotes present specific challenges, namely their often internal "hidden" anatomy. Quantifying female reproductive systems is crucial to recognising reproductive pathologies, monitoring menstrual cycles, and understanding copulatory mechanics. Here we conduct a review of the application of non-invasive imaging techniques to female amniote reproductive anatomy. We introduce the commonly used imaging modalities of computed tomography (CT) and magnetic resonance imaging (MRI), highlighting their advantages and limitations when applied to female reproductive tissues, and make suggestions for future advances. We also include a case study of micro CT and MRI, along with their associated staining protocols, applied to cadavers of female adult stoats (Mustela erminea). In doing so, we will progress the discussion surrounding the imaging of female reproductive anatomy, whilst also impacting the fields of sexual selection research and comparative anatomy more broadly.
Collapse
Affiliation(s)
- Emma Clear
- Department of Natural Sciences, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
- Williamson Park Zoo, Quernmore Road, Lancaster, Lancashire LA1 1UX, UK
| | - Robyn A Grant
- Department of Natural Sciences, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
| | - Michael Carroll
- Department of Life Sciences, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
| | - Charlotte A Brassey
- Department of Natural Sciences, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
| |
Collapse
|
6
|
Savvidis S, Gerli MF, Pellegrini M, Massimi L, Hagen CK, Endrizzi M, Atzeni A, Ogunbiyi OK, Turmaine M, Smith ES, Fagiani C, Selmin G, Urbani L, Durkin N, Shibuya S, De Coppi P, Olivo A. Monitoring tissue engineered constructs and protocols with laboratory-based x-ray phase contrast tomography. Acta Biomater 2022; 141:290-299. [PMID: 35051630 DOI: 10.1016/j.actbio.2022.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/01/2022]
Abstract
Tissue engineering (TE) aims to generate bioengineered constructs which can offer a surgical treatment for many conditions involving tissue or organ loss. Construct generation must be guided by suitable assessment tools. However, most current tools (e.g. histology) are destructive, which restricts evaluation to a single-2D anatomical plane, and has no potential for assessing constructs prior to or following their implantation. An alternative can be provided by laboratory-based x-ray phase contrast computed tomography (PC-CT), which enables the extraction of 3D density maps of an organ's anatomy. In this work, we developed a semi-automated image processing pipeline dedicated to the analysis of PC-CT slices of oesophageal constructs. Visual and quantitative (density and morphological) information is extracted on a volumetric basis, enabling a comprehensive evaluation of the regenerated constructs. We believe the presented tools can enable the successful regeneration of patient-specific oesophagus, and bring comparable benefit to a wide range of TE applications. STATEMENT OF SIGNIFICANCE: Phase contrast computed tomography (PC-CT) is an imaging modality which generates high resolution volumetric density maps of biological tissue. In this work, we demonstrate the use of PC-CT as a new tool for guiding the progression of an oesophageal tissue engineering (TE) protocol. Specifically, we developed a semi-automated image-processing pipeline which analyses the oesophageal PC-CT slices, extracting visual and quantitative (density and morphological) information. This information was proven key for performing a comprehensive evaluation of the regenerated constructs, and cannot be obtained through existing assessment tools primarily due to their destructive nature (e.g. histology). This work paves the way for using PC-CT in a wide range of TE applications which can be pivotal for unlocking the potential of this field.
Collapse
|
7
|
Clark D, Badea C. Advances in micro-CT imaging of small animals. Phys Med 2021; 88:175-192. [PMID: 34284331 PMCID: PMC8447222 DOI: 10.1016/j.ejmp.2021.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Micron-scale computed tomography (micro-CT) imaging is a ubiquitous, cost-effective, and non-invasive three-dimensional imaging modality. We review recent developments and applications of micro-CT for preclinical research. METHODS Based on a comprehensive review of recent micro-CT literature, we summarize features of state-of-the-art hardware and ongoing challenges and promising research directions in the field. RESULTS Representative features of commercially available micro-CT scanners and some new applications for both in vivo and ex vivo imaging are described. New advancements include spectral scanning using dual-energy micro-CT based on energy-integrating detectors or a new generation of photon-counting x-ray detectors (PCDs). Beyond two-material discrimination, PCDs enable quantitative differentiation of intrinsic tissues from one or more extrinsic contrast agents. When these extrinsic contrast agents are incorporated into a nanoparticle platform (e.g. liposomes), novel micro-CT imaging applications are possible such as combined therapy and diagnostic imaging in the field of cancer theranostics. Another major area of research in micro-CT is in x-ray phase contrast (XPC) imaging. XPC imaging opens CT to many new imaging applications because phase changes are more sensitive to density variations in soft tissues than standard absorption imaging. We further review the impact of deep learning on micro-CT. We feature several recent works which have successfully applied deep learning to micro-CT data, and we outline several challenges specific to micro-CT. CONCLUSIONS All of these advancements establish micro-CT imaging at the forefront of preclinical research, able to provide anatomical, functional, and even molecular information while serving as a testbench for translational research.
Collapse
Affiliation(s)
- D.P. Clark
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC 27710
| | - C.T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
8
|
Olivo A. Edge-illumination x-ray phase-contrast imaging. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:363002. [PMID: 34167096 PMCID: PMC8276004 DOI: 10.1088/1361-648x/ac0e6e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 05/08/2023]
Abstract
Although early demonstration dates back to the mid-sixties, x-ray phase-contrast imaging (XPCI) became hugely popular in the mid-90s, thanks to the advent of 3rd generation synchrotron facilities. Its ability to reveal object features that had so far been considered invisible to x-rays immediately suggested great potential for applications across the life and the physical sciences, and an increasing number of groups worldwide started experimenting with it. At that time, it looked like a synchrotron facility was strictly necessary to perform XPCI with some degree of efficiency-the only alternative being micro-focal sources, the limited flux of which imposed excessively long exposure times. However, new approaches emerged in the mid-00s that overcame this limitation, and allowed XPCI implementations with conventional, non-micro-focal x-ray sources. One of these approaches showing particular promise for 'real-world' applications is edge-illumination XPCI: this article describes the key steps in its evolution in the context of contemporary developments in XPCI research, and presents its current state-of-the-art, especially in terms of transition towards practical applications.
Collapse
Affiliation(s)
- Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, UCL, London, United Kingdom
| |
Collapse
|
9
|
Schaff F, Morgan KS, Pollock JA, Croton LCP, Hooper SB, Kitchen MJ. Material Decomposition Using Spectral Propagation-Based Phase-Contrast X-Ray Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3891-3899. [PMID: 32746132 DOI: 10.1109/tmi.2020.3006815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Material decomposition in X-ray imaging uses the energy-dependence of attenuation to digitally decompose an object into specific constituent materials, generally at the cost of enhanced image noise. Propagation-based X-ray phase-contrast imaging is a developing technique that can be used to reduce image noise, in particular from weakly attenuating objects. In this paper, we combine spectral phase-contrast imaging with material decomposition to both better visualize weakly attenuating features and separate them from overlying objects in radiography. We derive an algorithm that performs both tasks simultaneously and verify it against numerical simulations and experimental measurements of ideal two-component samples composed of pure aluminum and poly(methyl methacrylate). Additionally, we showcase first imaging results of a rabbit kitten's lung. The attenuation signal of a thorax, in particular, is dominated by the strongly attenuating bones of the ribcage. Combined with the weak soft tissue signal, this makes it difficult to visualize the fine anatomical structures across the whole lung. In all cases, clean material decomposition was achieved, without residual phase-contrast effects, from which we generate an un-obstructed image of the lung, free of bones. Spectral propagation-based phase-contrast imaging has the potential to be a valuable tool, not only in future lung research, but also in other systems for which phase-contrast imaging in combination with material decomposition proves to be advantageous.
Collapse
|