1
|
Courault P, Zimmer L, Lancelot S. Toward Functional PET Imaging of the Spinal Cord. Semin Nucl Med 2024:S0001-2998(24)00066-7. [PMID: 39181820 DOI: 10.1053/j.semnuclmed.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024]
Abstract
At present, spinal cord imaging primarily uses magnetic resonance imaging (MRI) or computed tomography (CT), but the greater sensitivity of positron emission tomography (PET) techniques and the development of new radiotracers are paving the way for a new approach. The substantial rise in publications on PET radiotracers for spinal cord exploration indicates a growing interest in the functional and molecular imaging of this organ. The present review aimed to provide an overview of the various radiotracers used in this indication, in preclinical and clinical settings. Firstly, we outline spinal cord anatomy and associated target pathologies. Secondly, we present the state-of-the-art of spinal cord imaging techniques used in clinical practice, with their respective strengths and limitations. Thirdly, we summarize the literature on radiotracers employed in functional PET imaging of the spinal cord. In conclusion, we propose criteria for an ideal radiotracer for molecular spinal cord imaging, emphasizing the relevance of multimodal hybrid cameras, and particularly the benefits of PET-MRI integration.
Collapse
Affiliation(s)
- Pierre Courault
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRSx, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging Platform, Lyon, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRSx, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging Platform, Lyon, France; National Institute for Nuclear Science and Technology (INSTN), CEA, Saclay, France.
| | - Sophie Lancelot
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRSx, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging Platform, Lyon, France
| |
Collapse
|
2
|
Kaiser L, Holzgreve A, Quach S, Ingrisch M, Unterrainer M, Dekorsy FJ, Lindner S, Ruf V, Brosch-Lenz J, Delker A, Böning G, Suchorska B, Niyazi M, Wetzel CH, Riemenschneider MJ, Stöcklein S, Brendel M, Rupprecht R, Thon N, von Baumgarten L, Tonn JC, Bartenstein P, Ziegler S, Albert NL. Differential Spatial Distribution of TSPO or Amino Acid PET Signal and MRI Contrast Enhancement in Gliomas. Cancers (Basel) 2021; 14:cancers14010053. [PMID: 35008218 PMCID: PMC8750092 DOI: 10.3390/cancers14010053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Radiotracers targeting the translocator protein (TSPO) have recently gained substantial interest, since TSPO is overexpressed in malignant gliomas, where it correlates inversely with patient’s survival. The high-affinity TSPO PET ligand [18F]GE180 was found to depict tumor areas with a remarkably high contrast and has been shown to provide non-invasive information on histological tumor grades. Yet, its significance was questioned with the argument, that the high contrast may solely arise from nonspecific accumulation in tissue supplied by leaky vessels. This study aimed to address this question by providing a detailed evaluation of spatial associations between TSPO and amino acid PET with relative contrast enhancement in T1-weighted MRI. The results show that [18F]GE180 contrast does not reflect a disrupted blood–brain barrier (BBB) only and that multi-modal imaging generates complementary information, which may better depict spatial heterogeneity of tumor biology and may be used to individualize the therapy for each patient. Abstract In this study, dual PET and contrast enhanced MRI were combined to investigate their correlation per voxel in patients at initial diagnosis with suspected glioblastoma. Correlation with contrast enhancement (CE) as an indicator of BBB leakage was further used to evaluate whether PET signal is likely caused by BBB disruption alone, or rather attributable to specific binding after BBB passage. PET images with [18F]GE180 and the amino acid [18F]FET were acquired and normalized to healthy background (tumor-to-background ratio, TBR). Contrast enhanced images were normalized voxel by voxel with the pre-contrast T1-weighted MRI to generate relative CE values (rCE). Voxel-wise analysis revealed a high PET signal even within the sub-volumes without detectable CE. No to moderate correlation of rCE with TBR voxel-values and a small overlap as well as a larger distance of the hotspots delineated in rCE and TBR-PET images were detected. In contrast, voxel-wise correlation between both PET modalities was strong for most patients and hotspots showed a moderate overlap and distance. The high PET signal in tumor sub-volumes without CE observed in voxel-wise analysis as well as the discordant hotspots emphasize the specificity of the PET signals and the relevance of combined differential information from dual PET and MRI images.
Collapse
Affiliation(s)
- Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
- Correspondence:
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany; (S.Q.); (N.T.); (L.v.B.); (J.-C.T.)
| | - Michael Ingrisch
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.I.); (S.S.)
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.I.); (S.S.)
| | - Franziska J. Dekorsy
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, LMU Munich, 81377 Munich, Germany; (V.R.); (R.R.)
| | - Julia Brosch-Lenz
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Astrid Delker
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | | | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christian H. Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany;
| | | | - Sophia Stöcklein
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.I.); (S.S.)
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany;
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany; (S.Q.); (N.T.); (L.v.B.); (J.-C.T.)
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany; (S.Q.); (N.T.); (L.v.B.); (J.-C.T.)
| | - Jörg-Christian Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany; (S.Q.); (N.T.); (L.v.B.); (J.-C.T.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany; (A.H.); (M.U.); (F.J.D.); (S.L.); (J.B.-L.); (A.D.); (G.B.); (M.B.); (P.B.); (S.Z.); (N.L.A.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Nikam RM, Yue X, Kandula VV, Paudyal B, Langhans SA, Averill LW, Choudhary AK. Unravelling neuroinflammation in abusive head trauma with radiotracer imaging. Pediatr Radiol 2021; 51:966-970. [PMID: 33999238 DOI: 10.1007/s00247-021-04995-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/07/2020] [Accepted: 01/27/2021] [Indexed: 01/07/2023]
Abstract
Abusive head trauma (AHT) is a leading cause of mortality and morbidity in child abuse, with a mortality rate of approximately 25%. In survivors, the prognosis remains dismal, with high prevalence of cerebral palsy, epilepsy and neuropsychiatric disorders. Early and accurate diagnosis of AHT is challenging, both clinically and radiologically, with up to one-third of cases missed on initial examination. Moreover, most of the management in AHT is supportive, reflective of the lack of clear understanding of specific pathogenic mechanisms underlying secondary insult, with approaches targeted toward decreasing intracranial hypertension and reducing cerebral metabolism, cell death and excitotoxicity. Multiple studies have elucidated the role of pro- and anti-inflammatory cytokines and chemokines with upregulation/recruitment of microglia/macrophages, oligodendrocytes and astrocytes in severe traumatic brain injury (TBI). In addition, recent studies in animal models of AHT have demonstrated significant upregulation of microglia, with a potential role of inflammatory cascade contributing to secondary insult. Despite the histological and biochemical evidence, there is a significant dearth of specific imaging approaches to identify this neuroinflammation in AHT. The primary motivation for development of such imaging approaches stems from the need to therapeutically target neuroinflammation and establish its utility in monitoring and prognostication. In the present paper, we discuss the available data suggesting the potential role of neuroinflammation in AHT and role of radiotracer imaging in aiding diagnosis and patient management.
Collapse
Affiliation(s)
- Rahul M Nikam
- Department of Medical Imaging, Nemours Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE, 19803, USA. .,Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA.
| | - Xuyi Yue
- Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Vinay V Kandula
- Department of Medical Imaging, Nemours Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE, 19803, USA
| | - Bishnuhari Paudyal
- Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Sigrid A Langhans
- Katzin Diagnostic & Research PET/MR Center, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Lauren W Averill
- Department of Medical Imaging, Nemours Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE, 19803, USA
| | - Arabinda K Choudhary
- Department of Radiology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| |
Collapse
|
4
|
Palleis C, Sauerbeck J, Beyer L, Harris S, Schmitt J, Morenas-Rodriguez E, Finze A, Nitschmann A, Ruch-Rubinstein F, Eckenweber F, Biechele G, Blume T, Shi Y, Weidinger E, Prix C, Bötzel K, Danek A, Rauchmann BS, Stöcklein S, Lindner S, Unterrainer M, Albert NL, Wetzel C, Rupprecht R, Rominger A, Bartenstein P, Herms J, Perneczky R, Haass C, Levin J, Höglinger GU, Brendel M. In Vivo Assessment of Neuroinflammation in 4-Repeat Tauopathies. Mov Disord 2020; 36:883-894. [PMID: 33245166 DOI: 10.1002/mds.28395] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neuroinflammation has received growing interest as a therapeutic target in neurodegenerative disorders, including 4-repeat tauopathies. OBJECTIVES The aim of this cross-sectional study was to investigate 18 kDa translocator protein positron emission tomography (PET) as a biomarker for microglial activation in the 4-repeat tauopathies corticobasal degeneration and progressive supranuclear palsy. METHODS Specific binding of the 18 kDa translocator protein tracer 18 F-GE-180 was determined by serial PET during pharmacological depletion of microglia in a 4-repeat tau mouse model. The 18 kDa translocator protein PET was performed in 30 patients with corticobasal syndrome (68 ± 9 years, 16 women) and 14 patients with progressive supranuclear palsy (69 ± 9 years, 8 women), and 13 control subjects (70 ± 7 years, 7 women). Group comparisons and associations with parameters of disease progression were assessed by region-based and voxel-wise analyses. RESULTS Tracer binding was significantly reduced after pharmacological depletion of microglia in 4-repeat tau mice. Elevated 18 kDa translocator protein labeling was observed in the subcortical brain areas of patients with corticobasal syndrome and progressive supranuclear palsy when compared with controls and was most pronounced in the globus pallidus internus, whereas only patients with corticobasal syndrome showed additionally elevated tracer binding in motor and supplemental motor areas. The 18 kDa translocator protein labeling was not correlated with parameters of disease progression in corticobasal syndrome and progressive supranuclear palsy but allowed sensitive detection in patients with 4-repeat tauopathies by a multiregion classifier. CONCLUSIONS Our data indicate that 18 F-GE-180 PET detects microglial activation in the brain of patients with 4-repeat tauopathy, fitting to predilection sites of the phenotype. The 18 kDa translocator protein PET has a potential for monitoring neuroinflammation in 4-repeat tauopathies. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Carla Palleis
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Julia Sauerbeck
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Stefanie Harris
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Julia Schmitt
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Anika Finze
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Alexander Nitschmann
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Tanja Blume
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Yuan Shi
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Endy Weidinger
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Catharina Prix
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Kai Bötzel
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Adrian Danek
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany.,Center for Neuropathology and Prion Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sophia Stöcklein
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Christian Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.,Department of Nuclear Medicine, University of Bern, Inselspital, Bern, Switzerland
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.,Chair of Metabolic Biochemistry, Biomedical Center, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases, Munich, Germany.,Center for Neuropathology and Prion Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,Ageing Epidemiology Research Unit, School of Public Health, Imperial College, London, UK
| | - Christian Haass
- German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Nuclear Medicine, University of Bern, Inselspital, Bern, Switzerland.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany.,German Center for Neurodegenerative Diseases, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
5
|
Downer OM, Marcus RE, Zürcher NR, Hooker JM. Tracing the History of the Human Translocator Protein to Recent Neurodegenerative and Psychiatric Imaging. ACS Chem Neurosci 2020; 11:2192-2200. [PMID: 32662626 DOI: 10.1021/acschemneuro.0c00362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human 18 kDa translocator protein (TSPO) has been widely used as a measure of glial activation in health and disease. With the continuous progress of radiotracers with increased affinity and selectivity, associations between TSPO expression, disease severity, and progression have been examined, particularly in neurodegenerative disorders such as multiple sclerosis (MS), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). However, findings in psychiatric disorders have prompted reassessment of the interpretation of regional TSPO expression differences in the brain, specifically with respect to potential neuroinflammatory components. This "mini" Review aims to guide readers through the complexity of TSPO imaging research by identifying the successes, challenges, and promising new directions of the field. We will provide a brief history of how TSPO imaging has evolved over the last three decades and present lessons learned in the context of neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Olivia M. Downer
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Rachel E.G. Marcus
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Nicole R. Zürcher
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jacob M. Hooker
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
6
|
Affiliation(s)
- Richard Nicholas
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK.
| | - David Brooks
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David Owen
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|