1
|
Pop CF, Veys I, Bormans A, Larsimont D, Liberale G. Fluorescence imaging for real-time detection of breast cancer tumors using IV injection of indocyanine green with non-conventional imaging: a systematic review of preclinical and clinical studies of perioperative imaging technologies. Breast Cancer Res Treat 2024; 204:429-442. [PMID: 38182824 PMCID: PMC10959791 DOI: 10.1007/s10549-023-07199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/22/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND This review summarizes the available data on the effectiveness of indocyanine green fluorescence imaging (ICG-FI) for real-time detection of breast cancer (BC) tumors with perioperative imaging technologies. METHODS PubMed and Scopus databases were exhaustively searched for publications on the use of the real-time ICG-FI evaluation of BC tumors with non-conventional breast imaging technologies. RESULTS Twenty-three studies were included in this review. ICG-FI has been used for BC tumor identification in 12 orthotopic animal tumor experiences, 4 studies on animal assessment, and for 7 human clinical applications. The BC tumor-to-background ratio (TBR) was 1.1-8.5 in orthotopic tumor models and 1.4-3.9 in animal experiences. The detection of primary human BC tumors varied from 40% to 100%. The mean TBR reported for human BC varied from 2.1 to 3.7. In two studies evaluating BC surgical margins, good sensitivity (93.3% and 100%) and specificity (60% and 96%) have been reported, with a negative predictive value of ICG-FI to predict margin involvement intraoperatively of 100% in one study. CONCLUSIONS The use of ICG-FI as a guiding tool for the real-time identification of BC tumors and for the assessment of tumor boundaries is promising. There is great variability between the studies with regard to timing and dose. Further evidence is needed to assess whether ICG-guided BC surgery may be implemented as a standard of care.
Collapse
Affiliation(s)
- C Florin Pop
- Department of Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Rue Meylemeersch 90, 1070, Brussels, Belgium.
| | - Isabelle Veys
- Department of Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Rue Meylemeersch 90, 1070, Brussels, Belgium
| | - Anne Bormans
- Institutional Library, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Gabriel Liberale
- Department of Surgical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Rue Meylemeersch 90, 1070, Brussels, Belgium
| |
Collapse
|
2
|
Azin M, Ngo KH, Hojanazarova J, Demehri S. Topical Calcipotriol Plus Imiquimod Immunotherapy for Nonkeratinocyte Skin Cancers. JID INNOVATIONS 2023; 3:100221. [PMID: 37731472 PMCID: PMC10507651 DOI: 10.1016/j.xjidi.2023.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 09/22/2023] Open
Abstract
Nonkeratinocyte cutaneous malignancies, including breast cancer cutaneous metastasis and melanoma in situ, are often poor surgical candidates. Imiquimod (IMQ), a toll-like receptor 7 agonist that activates innate immunity in the skin, is used to treat these cutaneous malignancies. However, IMQ's modest effect on the activation of adaptive immunity limits its efficacy as a monotherapy. In this study, we demonstrate that topical TSLP cytokine inducers-calcipotriol and retinoic acid-synergize with IMQ to activate CD4+ T-cell immunity against nonkeratinocyte cutaneous malignancies. Topical calcipotriol plus IMQ treatment reduced breast tumor growth compared with calcipotriol or IMQ alone (P < 0.0001). Calcipotriol plus IMQ-mediated tumor suppression was associated with significant infiltration of CD4+ effector T cells in the tumor microenvironment. Notably, topical calcipotriol plus IMQ immunotherapy enabled immune checkpoint blockade therapy to effectively control immunologically cold breast tumors, which was associated with induction of CD4+ T-cell immunity. Topical treatment with calcipotriol plus IMQ and retinoic acid plus IMQ also blocked subcutaneous melanoma growth. These findings highlight the synergistic effect of topical TSLP induction in combination with innate immune cell activation as an effective immunotherapy for malignancies affecting the skin.
Collapse
Affiliation(s)
- Marjan Azin
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth H. Ngo
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jennet Hojanazarova
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shadmehr Demehri
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Wongso H, Goenawan H, Lesmana R, Mahendra I, Kurniawan A, Wibawa THA, Nuraeni W, Rosyidiah E, Setiadi Y, Sylviana N, Pratiwi YS, Rosdianto AM, Supratman U, Kusumaningrum CE. Synthesis and Biological Evaluation of New Fluorescent Probe BPN-01: A Model Molecule for Fluorescence Image-guided Surgery. J Fluoresc 2023; 33:1827-1839. [PMID: 36847931 DOI: 10.1007/s10895-023-03166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023]
Abstract
Fluorescence image-guided surgery (FIGS) can serve as a tool to achieve successful resection of tumour tissues during surgery, serving as a surgical navigator for surgeons. FIGS relies on the use of fluorescent molecules that can specifically interact with cancer cells. In this work, we developed a new model of fluorescent probe based on benzothiazole-phenylamide moiety featuring the visible fluorophore nitrobenzoxadiazole (NBD), namely BPN-01. This compound was designed and synthesised for potential applications in the tissue biopsy examination and ex-vivo imaging during FIGS of solid cancers. The probe BPN-01 exhibited favourable spectroscopic properties, particularly in nonpolar and alkaline solvents. Moreover, in vitro fluorescence imaging revealed that the probe appeared to recognise and be internalised in the prostate (DU-145) and melanoma (B16-F10) cancer cells, but not in the normal cells (myoblast C2C12). The cytotoxicity studies revealed that probe BPN-01 was not toxic to the B16 cells, suggesting excellent biocompatibility. Furthermore, the computational analysis showed that the calculated binding affinity of the probe to both translocator protein 18 kDa (TSPO) and human epidermal growth factor receptor 2 (HER2) was considerably high. Hence, probe BPN-01 displays promising properties and may be valuable for visualising cancer cells in vitro. Furthermore, ligand 5 can potentially be labelled with NIR fluorophore and radionuclide, and serves as a dual imaging agent for in vivo applications.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia.
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia.
| | - Hanna Goenawan
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Physiology Molecular, Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Physiology Molecular, Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Isa Mahendra
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Ahmad Kurniawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Teguh H A Wibawa
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Witri Nuraeni
- Directorate of Laboratory Management, Research Facilities, and Science and Technology Park, National Research and Innovation Agency of Indonesia, Jl. Tamansari No. 71, Lb. Siliwangi, Bandung, West Java, 40132, Indonesia
| | - Endah Rosyidiah
- Directorate of Laboratory Management, Research Facilities, and Science and Technology Park, National Research and Innovation Agency of Indonesia, Jl. Tamansari No. 71, Lb. Siliwangi, Bandung, West Java, 40132, Indonesia
| | - Yanuar Setiadi
- Research Organization for Life Sciences and Environment, Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Nova Sylviana
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Physiology Molecular, Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Yuni Susanti Pratiwi
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Physiology Molecular, Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Aziiz Mardanarian Rosdianto
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Physiology Molecular, Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
- Veterinary Medicine Study Program, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Unang Supratman
- Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, 45363, Indonesia
| | - Crhisterra E Kusumaningrum
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| |
Collapse
|
4
|
Bortot B, Mangogna A, Di Lorenzo G, Stabile G, Ricci G, Biffi S. Image-guided cancer surgery: a narrative review on imaging modalities and emerging nanotechnology strategies. J Nanobiotechnology 2023; 21:155. [PMID: 37202750 DOI: 10.1186/s12951-023-01926-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
Surgical resection is the cornerstone of solid tumour treatment. Current techniques for evaluating margin statuses, such as frozen section, imprint cytology, and intraoperative ultrasound, are helpful. However, an intraoperative assessment of tumour margins that is accurate and safe is clinically necessary. Positive surgical margins (PSM) have a well-documented negative effect on treatment outcomes and survival. As a result, surgical tumour imaging methods are now a practical method for reducing PSM rates and improving the efficiency of debulking surgery. Because of their unique characteristics, nanoparticles can function as contrast agents in image-guided surgery. While most image-guided surgical applications utilizing nanotechnology are now in the preclinical stage, some are beginning to reach the clinical phase. Here, we list the various imaging techniques used in image-guided surgery, such as optical imaging, ultrasound, computed tomography, magnetic resonance imaging, nuclear medicine imaging, and the most current developments in the potential of nanotechnology to detect surgical malignancies. In the coming years, we will see the evolution of nanoparticles tailored to specific tumour types and the introduction of surgical equipment to improve resection accuracy. Although the promise of nanotechnology for producing exogenous molecular contrast agents has been clearly demonstrated, much work remains to be done to put it into practice.
Collapse
Affiliation(s)
- Barbara Bortot
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Alessandro Mangogna
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giovanni Di Lorenzo
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Guglielmo Stabile
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giuseppe Ricci
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Stefania Biffi
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.
| |
Collapse
|
5
|
A Simple and Sensitive LC-MS/MS for Quantitation of ICG in Rat Plasma: Application to a Pre-Clinical Pharmacokinetic Study. SEPARATIONS 2023. [DOI: 10.3390/separations10020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A selective, sensitive, and rapid liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitation of ICG in rat plasma. The chromatographic separation was achieved using an ACE excel C18 (3 µm, 50 × 3.0 mm) column, with a mobile phase composition of 0.1% formic acid and 0.1% formic acid in acetonitrile, using a gradient flow at a rate of 0.3 mL/min. The MS was operated at a unit resolution in the multiple reaction monitoring mode, using the precursor ion → product ion combinations of 753.3 → 330.2 m/z (ICG) and 747.45 → 717.50 (Cy7.5 amine) with a run time of 5 min. The assay was linear over a concentration range of 1–1000 ng/mL with a regression coefficient (r2) of 0.998 or better. The inter and intra-batch precision (% relative standard deviation, %RSD) was lower than 13.5%, with accuracy (%Bias) between −10.03% and 11.56%. The ICG was stable under laboratory storage and handling conditions. The validated method was successfully applied to preclinical pharmacokinetic (PK) studies of ICG at a dose of 0.39 mg/kg in rats. PK parameters suggested the highest plasma concentration within 2 min of intravenous dosing with restricted systemic distribution and rapid clearance.
Collapse
|
6
|
Arshad R, Kiani MH, Rahdar A, Sargazi S, Barani M, Shojaei S, Bilal M, Kumar D, Pandey S. Nano-Based Theranostic Platforms for Breast Cancer: A Review of Latest Advancements. Bioengineering (Basel) 2022; 9:bioengineering9070320. [PMID: 35877371 PMCID: PMC9311542 DOI: 10.3390/bioengineering9070320] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a highly metastatic multifactorial disease with various histological and molecular subtypes. Due to recent advancements, the mortality rate in BC has improved over the past five decades. Detection and treatment of many cancers are now possible due to the application of nanomedicine in clinical practice. Nanomedicine products such as Doxil® and Abraxane® have already been extensively used for BC adjuvant therapy with favorable clinical outcomes. However, these products were designed initially for generic anticancer purposes and not specifically for BC treatment. With a better understanding of the molecular biology of BC, several novel and promising nanotherapeutic strategies and devices have been developed in recent years. In this context, multi-functionalized nanostructures are becoming potential carriers for enhanced chemotherapy in BC patients. To design these nanostructures, a wide range of materials, such as proteins, lipids, polymers, and hybrid materials, can be used and tailored for specific purposes against BC. Selective targeting of BC cells results in the activation of programmed cell death in BC cells and can be considered a promising strategy for managing triple-negative BC. Currently, conventional BC screening methods such as mammography, digital breast tomosynthesis (DBT), ultrasonography, and magnetic resonance imaging (MRI) are either costly or expose the user to hazardous radiation that could harm them. Therefore, there is a need for such analytical techniques for detecting BC that are highly selective and sensitive, have a very low detection limit, are durable, biocompatible, and reproducible. In detecting BC biomarkers, nanostructures are used alone or in conjunction with numerous molecules. This review intends to highlight the recent advances in nanomedicine in BC treatment and diagnosis, emphasizing the targeting of BC cells that overexpress receptors of epidermal growth factors. Researchers may gain insight from these strategies to design and develop more tailored nanomedicine for BC to achieve further improvements in cancer specificity, antitumorigenic effects, anti-metastasis effects, and drug resistance reversal effects.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 54000, Pakistan;
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
- Correspondence: (A.R.); or (S.P.)
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Shirin Shojaei
- Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Correspondence: (A.R.); or (S.P.)
| |
Collapse
|
7
|
Li W, Li X. Development of intraoperative assessment of margins in breast conserving surgery: a narrative review. Gland Surg 2022; 11:258-269. [PMID: 35242687 PMCID: PMC8825505 DOI: 10.21037/gs-21-652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/17/2021] [Indexed: 07/28/2023]
Abstract
OBJECTIVE We intend to provide an informative and up-to-date summary on the topic of intraoperative assessment of margins in breast conserving surgery (BCS). Conventional methods as well as cutting-edge technologies are analyzed for their advantages and limitations in the hope that clinicians can turn to this for reference. This review can also offer guidance for technicians in the future design of intraoperative margin assessment tools. BACKGROUND Achieving negative margins during BCS is one of the vital factors for preventing local recurrence. Conducting intraoperative margin assessment can ensure negative margins to a large extent and possibly relieve patients of the anguish of re-interventions. In recent years, innovative methods for margin assessment during BCS are advancing rapidly. And there is a lack of summary regarding the development of intraoperative margin assessment in BCS. METHODS A PubMed search with keywords "intraoperative margin assessment" and "breast conserving surgery" was conducted. Relevant publications were screened manually for its title, abstract and even full text to determine its true relevance. Publications on neo-adjuvant therapy and intraoperative radiotherapy were excluded. References from the searched articles and other supplementary articles were also looked into. CONCLUSIONS Conventional methods for margin assessment yields stable outcome but its use is limited because of the demand on pathology staff and the trade-off between time and precision. Conventional imaging techniques pass the workload to radiologists at the cost of a significantly low duration of time. Involving artificial intelligence for image-based assessment is a further improvement. However, conventional imaging is inherently flawed in that occult lesions can't show on the image and the showing ones are ambiguous and open to interpretation. Unconventional techniques which base their judgment on cellular composition are more reassuring. Nonetheless, unconventional techniques should be subjected to clinical trials before putting into practice. And studies regarding comparison between conventional methods and unconventional methods are also needed to evaluate their relative efficacy.
Collapse
Affiliation(s)
- Wanheng Li
- First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Xiru Li
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Bhattacharya DS, Bapat A, Svechkarev D, Mohs AM. Water-Soluble Blue Fluorescent Nonconjugated Polymer Dots from Hyaluronic Acid and Hydrophobic Amino Acids. ACS OMEGA 2021; 6:17890-17901. [PMID: 34308024 PMCID: PMC8296014 DOI: 10.1021/acsomega.1c01343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/24/2021] [Indexed: 05/04/2023]
Abstract
Fluorescent polymers have been increasingly investigated to improve their water solubility and biocompatibility to enhance their performance in drug delivery and theranostic applications. However, the environmentally friendly synthesis and dual functionality of such systems remain a challenge due to the complicated synthesis of conventional fluorescent materials. Herein, we generated a novel blue fluorescent polymer dot through chemical conjugation of hydrophobic amino acids to hyaluronic acid (HA) under one-pot green chemistry conditions. These nonconjugated fluorescent polymer dots (NCPDs) are water soluble, nontoxic to cells, have high fluorescence quantum yield, and can be used for in vitro bioimaging. HA-derived NCPDs exhibit excitation wavelength-dependent fluorescent properties. In addition, the NCPDs also show enhanced doxorubicin loading and delivery in naive and drug-resistant breast cancer cells in 2D and 3D tumor cellular systems. These results demonstrate the potential for successful synthetic scale-up and applications for HA-derived NCPDs.
Collapse
Affiliation(s)
- Deep S. Bhattacharya
- Department
of Pharmaceutical Sciences, University of
Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Aishwarya Bapat
- Department
of Pharmaceutical Sciences, University of
Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Denis Svechkarev
- Department
of Pharmaceutical Sciences, University of
Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Aaron M. Mohs
- Department
of Pharmaceutical Sciences, University of
Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Fred
and Pamela Buffett Cancer Center, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department
of Biochemistry and Molecular Biology, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
9
|
Simón M, Jørgensen JT, Juhl K, Kjaer A. The use of a uPAR-targeted probe for photothermal cancer therapy prolongs survival in a xenograft mouse model of glioblastoma. Oncotarget 2021; 12:1366-1376. [PMID: 34262647 PMCID: PMC8274719 DOI: 10.18632/oncotarget.28013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023] Open
Abstract
The development of tumor-targeted probes that can efficiently reach cancerous tissue is an important focus of preclinical research. Photothermal cancer therapy (PTT) relies on light-absorbing molecules, which are directed towards tumor tissue and irradiated with an external source of light. This light is transformed into heat, causing localized hyperthermia and tumor death. The fluorescent probe indocyanine green (ICG) is already used as an imaging agent both preclinically and in clinical settings, but its use for PTT is yet to be fully exploited due to its short retention time and non-specific tumor targeting. Therefore, increasing ICG tumor uptake is necessary to improve treatment outcome. The urokinase-type plasminogen activator receptor, uPAR, is overexpressed in multiple tumor types. ICG-Glu-Glu-AE105, consisting of the uPAR-targeting peptide AE105 conjugated to ICG, has shown great potential for fluorescence-guided surgery. In this study, ICG-Glu-Glu-AE105 was evaluated as photothermal agent in a subcutaneous mouse model of human glioblastoma. We observed that the photothermal abilities of ICG-Glu-Glu-AE105 triggered high temperatures in the tumor during PTT, leading to tumor death and prolonged survival. This confirms the potential of ICG-Glu-Glu-AE105 as photothermal agent and indicates that it could be used as an add-on to the application of the probe for fluorescence-guided surgery.
Collapse
Affiliation(s)
- Marina Simón
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Jesper Tranekjær Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Karina Juhl
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Liu CH, Grodzinski P. Nanotechnology for Cancer Imaging: Advances, Challenges, and Clinical Opportunities. Radiol Imaging Cancer 2021; 3:e200052. [PMID: 34047667 PMCID: PMC8183257 DOI: 10.1148/rycan.2021200052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 02/28/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022]
Abstract
Nanoparticle (NP) imaging applications have the potential to improve cancer diagnostics, therapeutics, and treatment management. In biomedical research and clinical practice, NPs can serve as labels or labeled carriers for monitoring drug delivery or serve as imaging agents for enhanced imaging contrast, as well as providing improved signal sensitivity and specificity for in vivo imaging of molecular and cellular processes. These qualities offer exciting opportunities for NP-based imaging agents to address current limitations in oncologic imaging. Despite substantial advancements in NP design and development, very few NP-based imaging agents have translated into clinics within the past 5 years. This review highlights some promising NP-enabled imaging techniques and their potential to address current clinical cancer imaging limitations. Although most examples provided herein are from the preclinical space, discussed imaging solutions could offer unique in vivo tools to solve biologic questions, improve cancer treatment effectiveness, and inspire clinical translation innovation to improve patient care. Keywords: Molecular Imaging-Cancer, Molecular Imaging-Nanoparticles, Molecular Imaging-Optical Imaging, Metastases, Oncology, Surgery, Treatment Effects.
Collapse
Affiliation(s)
- Christina H. Liu
- From the Cancer Imaging Program, National Cancer Institute, National
Institutes of Health, 9609 Medical Center Dr, Room 4W216, Rockville, MD
20850
| | - Piotr Grodzinski
- From the Cancer Imaging Program, National Cancer Institute, National
Institutes of Health, 9609 Medical Center Dr, Room 4W216, Rockville, MD
20850
| |
Collapse
|
11
|
Bourgeois P, Veys I, Noterman D, De Neubourg F, Chintinne M, Vankerckhove S, Nogaret JM. Near-Infrared Fluorescence Imaging of Breast Cancer and Axillary Lymph Nodes After Intravenous Injection of Free Indocyanine Green. Front Oncol 2021; 11:602906. [PMID: 33767980 PMCID: PMC7985064 DOI: 10.3389/fonc.2021.602906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background Near-infrared fluorescence imaging (NIRFI) of breast cancer (BC) after the intravenous (IV) injection of free indocyanine green (fICG) has been reported to be feasible. However, some questions remained unclarified. Objective To evaluate the distribution of fICG in BC and the axillary lymph nodes (LNs) of women undergoing surgery with complete axillary LN dissection (CALND) and/or selective lymphadenectomy (SLN) of sentinel LNs (NCT no. 01993576 and NCT no. 02027818). Methods An intravenous injection of fICG (0.25 mg/kg) was administered to one series of 20 women undergoing treatment with mastectomy, the day before surgery in 5 (group 1) and immediately before surgery in 15 (group 2: tumor localization, 25; and pN+ CALND, 4) as well as to another series of 20 women undergoing treatment with tumorectomy (group 3). A dedicated NIR camera was used for ex vivo fluorescence imaging of the 45 BC lesions and the LNs. Results In group 1, two of the four BC lesions and one large pN+ LN exhibited fluorescence. In contrast, 24 of the 25 tumors in group 2 and all of the tumors in group 3 were fluorescent. The sentinel LNs were all fluorescent, as well as some of the LNs in all CALND specimens. Metastatic cells were found in the fluorescent LNs of the pN+ cases. Fluorescent BC lesions could be identified ex vivo on the surface of the lumpectomy specimen in 14 of 19 cases. Conclusions When fICG is injected intravenously just before surgery, BC can be detected using NIRFI with high sensitivity, with metastatic axillary LNs also showing fluorescence. Such a technical approach seems promising in the management of BC and merits further investigation.
Collapse
Affiliation(s)
- Pierre Bourgeois
- Nuclear Medicine Service, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Veys
- Surgery Service, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Danielle Noterman
- Surgery Service, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Filip De Neubourg
- Surgery Service, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Marie Chintinne
- Department of Anatomo-Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Sophie Vankerckhove
- Nuclear Medicine Service, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Marie Nogaret
- Surgery Service, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
12
|
Wojtynek NE, Mohs AM. Image-guided tumor surgery: The emerging role of nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1624. [PMID: 32162485 PMCID: PMC9469762 DOI: 10.1002/wnan.1624] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
Surgical resection is a mainstay treatment for solid tumors. Yet, methods to distinguish malignant from healthy tissue are primarily limited to tactile and visual cues as well as the surgeon's experience. As a result, there is a possibility that a positive surgical margin (PSM) or the presence of residual tumor left behind after resection may occur. It is well-documented that PSMs can negatively impact treatment outcomes and survival, as well as pose an economic burden. Therefore, surgical tumor imaging techniques have emerged as a promising method to decrease PSM rates. Nanoparticles (NPs) have unique characteristics to serve as optical contrast agents during image-guided surgery (IGS). Recently, there has been tremendous growth in the volume and types of NPs used for IGS, including clinical trials. Herein, we describe the most recent contributions of nanotechnology for surgical tumor identification. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Nicholas E. Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron M. Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|