1
|
Tachachartvanich P, Sangsuwan R, Navasumrit P, Ruchirawat M. Assessment of immunomodulatory effects of five commonly used parabens on human THP-1 derived macrophages: Implications for ecological and human health impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173823. [PMID: 38851341 DOI: 10.1016/j.scitotenv.2024.173823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Parabens are widely used as broad-spectrum anti-microbials and preservatives in food, cosmetics, pharmaceuticals, and personal care products. Studies suggest that the utilization of parabens has substantially increased over the past years, particularly during the global pandemic of coronavirus disease 2019 (COVID-19). Although parabens are generally recognized as safe by the U.S. FDA, some concerns have been raised regarding the potential health effects of parabens associated with immunotoxicity. Herein, we comprehensively investigated several key characteristics of immunotoxicants of five commonly used parabens (methyl-, ethyl-, propyl-, butyl-, and benzyl parabens) in human THP-1 derived macrophages, which are effector cells serving as a first line of host defense against pathogens and tumor immunosurveillance. The results indicate parabens, at concentrations found in humans and biota, significantly dampened macrophage chemotaxis and secretion of major pro-inflammatory cytokines (TNF-α and IL-6) and anti-inflammatory cytokine (IL-10), corroborating the mRNA expression profile. Furthermore, some parabens were found to markedly alter macrophage adhesion and cell surface expression of costimulatory molecules, CD80+ and CD86+, and significantly increase macrophage phagocytosis. Collectively, these findings heighten awareness of potential immunotoxicity posed by paraben exposure at biologically relevant concentrations, providing implications for human health and ecological risks associated with immune dysfunctions.
Collapse
Affiliation(s)
- Phum Tachachartvanich
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Rapeepat Sangsuwan
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| |
Collapse
|
2
|
Fabiano AR, Robbins SC, Knoblauch SV, Rowland SJ, Dombroski JA, King MR. Multiplex, high-throughput method to study cancer and immune cell mechanotransduction. Commun Biol 2024; 7:674. [PMID: 38824207 PMCID: PMC11144229 DOI: 10.1038/s42003-024-06327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/14/2024] [Indexed: 06/03/2024] Open
Abstract
Studying cellular mechanoresponses during cancer metastasis is limited by sample variation or complex protocols that current techniques require. Metastasis is governed by mechanotransduction, whereby cells translate external stimuli, such as circulatory fluid shear stress (FSS), into biochemical cues. We present high-throughput, semi-automated methods to expose cells to FSS using the VIAFLO96 multichannel pipetting device custom-fitted with 22 G needles, increasing the maximum FSS 94-fold from the unmodified tips. Specifically, we develop protocols to semi-automatically stain live samples and to fix, permeabilize, and intracellularly process cells for flow cytometry analysis. Our first model system confirmed that the pro-apoptotic effects of TRAIL therapeutics in prostate cancer cells can be enhanced via FSS-induced Piezo1 activation. Our second system implements this multiplex methodology to show that FSS exposure (290 dyn cm-2) increases activation of murine bone marrow-derived dendritic cells. These methodologies greatly improve the mechanobiology workflow, offering a high-throughput, multiplex approach.
Collapse
Affiliation(s)
- Abigail R Fabiano
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA
| | - Spencer C Robbins
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA
| | - Samantha V Knoblauch
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA
| | - Schyler J Rowland
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA
| | - Jenna A Dombroski
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA.
| |
Collapse
|
3
|
Ramesh A, Deshpande N, Malik V, Nguyen A, Malhotra M, Debnath M, Brouillard A, Kulkarni A. Activatable Nanoreporters for Real-Time Tracking of Macrophage Phenotypic States Associated with Disease Progression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300978. [PMID: 37317008 DOI: 10.1002/smll.202300978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Diagnosis of inflammatory diseases is characterized by identifying symptoms, biomarkers, and imaging. However, conventional techniques lack the sensitivities and specificities to detect disease early. Here, it is demonstrated that the detection of macrophage phenotypes, from inflammatory M1 to alternatively activated M2 macrophages, corresponding to the disease state can be used to predict the prognosis of various diseases. Activatable nanoreporters that can longitudinally detect the presence of the enzyme Arginase 1, a hallmark of M2 macrophages, and nitric oxide, a hallmark of M1 macrophages are engineered, in real-time. Specifically, an M2 nanoreporter enables the early imaging of the progression of breast cancer as predicted by selectively detecting M2 macrophages in tumors. The M1 nanoreporter enables real-time imaging of the subcutaneous inflammatory response that rises from a local lipopolysccharide (LPS) administration. Finally, the M1-M2 dual nanoreporter is evaluated in a muscle injury model, where an initial inflammatory response is monitored by imaging M1 macrophages at the site of inflammation, followed by a resolution phase monitored by the imaging of infiltrated M2 macrophages involved in matrix regeneration and wound healing. It is anticipated that this set of macrophage nanoreporters may be utilized for early diagnosis and longitudinal monitoring of inflammatory responses in various disease models.
Collapse
Affiliation(s)
- Anujan Ramesh
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Nilesh Deshpande
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Vaishali Malik
- Department of Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Anh Nguyen
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Mehak Malhotra
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Maharshi Debnath
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Anthony Brouillard
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Ashish Kulkarni
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
4
|
Abenavoli L, Scarlata GGM, Paravati MR, Boccuto L, Luzza F, Scarpellini E. Gut Microbiota and Liver Transplantation: Immune Mechanisms behind the Rejection. Biomedicines 2023; 11:1792. [PMID: 37509432 PMCID: PMC10376769 DOI: 10.3390/biomedicines11071792] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Liver transplantation (LT) is the treatment of choice for patients with cirrhosis, decompensated disease, acute liver failure, and hepatocellular carcinoma (HCC). In 3-25% of cases, an alarming problem is acute and chronic cellular rejection after LT, and this event can lead to the need for new transplantation or the death of the patient. On the other hand, gut microbiota is involved in several mechanisms sustaining the model of the "gut-liver axis". These include modulation of the immune response, which is altered in case of gut dysbiosis, possibly resulting in acute graft rejection. Some studies have evaluated the composition of the gut microbiota in cirrhotic patients before and after LT, but few of them have assessed its impact on liver rejection. This review underlines the changes in gut microbiota composition before and after liver transplantation, hypothesizing possible immune mechanisms linking dysbiosis to transplantation rejection. Evaluation of changes in the gut microbiota composition in these patients is therefore essential in order to monitor the success of LT and eventually adopt appropriate preventive measures.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | | | | | - Luigi Boccuto
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC 29634, USA
- School of Health Research, Clemson University, Clemson, SC 29634, USA
| | - Francesco Luzza
- Department of Health Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | - Emidio Scarpellini
- Translationeel Onderzoek van Gastro-Enterologische Aandoeningen (TARGID.), Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
5
|
The Role of Microbiota in Liver Transplantation and Liver Transplantation-Related Biliary Complications. Int J Mol Sci 2023; 24:ijms24054841. [PMID: 36902269 PMCID: PMC10003075 DOI: 10.3390/ijms24054841] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Liver transplantation as a treatment option for end-stage liver diseases is associated with a relevant risk for complications. On the one hand, immunological factors and associated chronic graft rejection are major causes of morbidity and carry an increased risk of mortality due to liver graft failure. On the other hand, infectious complications have a major impact on patient outcomes. In addition, abdominal or pulmonary infections, and biliary complications, including cholangitis, are common complications in patients after liver transplantation and can also be associated with a risk for mortality. Thereby, these patients already suffer from gut dysbiosis at the time of liver transplantation due to their severe underlying disease, causing end-stage liver failure. Despite an impaired gut-liver axis, repeated antibiotic therapies can cause major changes in the gut microbiome. Due to repeated biliary interventions, the biliary tract is often colonized by several bacteria with a high risk for multi-drug resistant germs causing local and systemic infections before and after liver transplantation. Growing evidence about the role of gut microbiota in the perioperative course and their impact on patient outcomes in liver transplantation is available. However, data about biliary microbiota and their impact on infectious and biliary complications are still sparse. In this comprehensive review, we compile the current evidence for the role of microbiome research in liver transplantation with a focus on biliary complications and infections due to multi-drug resistant germs.
Collapse
|
6
|
Implications of fractalkine on glial function, ablation and glial proteins/receptors/markers—understanding its therapeutic usefulness in neurological settings: a narrative review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Fractalkine (CX3CL1) is a chemokine predominantly released by neurons. As a signaling molecule, CX3CL1 facilitates talk between neurons and glia. CX3CL1 is considered as a potential target which could alleviate neuroinflammation. However, certain controversial results and ambiguous role of CX3CL1 make it inexorable to decipher the overall effects of CX3CL1 on the physiopathology of glial cells.
Main body of the abstract
Implications of cross-talk between CX3CL1 and different glial proteins/receptors/markers will give a bird eye view of the therapeutic significance of CX3CL1. Keeping with the need, this review identifies the effects of CX3CL1 on glial physiopathology, glial ablation, and gives a wide coverage on the effects of CX3CL1 on certain glial proteins/receptors/markers.
Short conclusion
Pinpoint prediction of the therapeutic effect of CX3CL1 on neuroinflammation needs further research. This is owing to certain obscure roles and implications of CX3CL1 on different glial proteins/receptors/markers, which are crucial under neurological settings. Further challenges are imposed due to the dichotomous roles played by CX3CL1. The age-old chemokine shows many newer scopes of research in near future. Thus, overall assessment of the effect of CX3CL1 becomes crucial prior to its administration in neuroinflammation.
Collapse
|
7
|
Kimm MA, Kästle S, Stechele MMR, Öcal E, Richter L, Ümütlü MR, Schinner R, Öcal O, Salvermoser L, Alunni-Fabbroni M, Seidensticker M, Goldberg SN, Ricke J, Wildgruber M. Early monocyte response following local ablation in hepatocellular carcinoma. Front Oncol 2022; 12:959987. [PMID: 36353535 PMCID: PMC9638411 DOI: 10.3389/fonc.2022.959987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2023] Open
Abstract
Local ablative therapies are established treatment modalities in the treatment of early- and intermediate-stage hepatocellular carcinoma (HCC). Systemic effects of local ablation on circulating immune cells may contribute to patients' response. Depending on their activation, myeloid cells are able to trigger HCC progression as well as to support anti-tumor immunity. Certain priming of monocytes may already occur while still in the circulation. By using flow cytometry, we analyzed peripheral blood monocyte cell populations from a prospective clinical trial cohort of 21 HCC patients following interstitial brachytherapy (IBT) or radiofrequency ablation (RFA) and investigated alterations in the composition of monocyte subpopulations and monocytic myeloid-derived suppressor cells (mMDSCs) as well as receptors involved in orchestrating monocyte function. We discovered that mMDSC levels increased following both IBT and RFA in virtually all patients. Furthermore, we identified varying alterations in the level of monocyte subpopulations following radiation compared to RFA. (A) Liquid biopsy liquid biopsy of circulating monocytes in the future may provide information on the inflammatory response towards local ablation as part of an orchestrated immune response.
Collapse
Affiliation(s)
- Melanie A. Kimm
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sophia Kästle
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias M. R. Stechele
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elif Öcal
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lisa Richter
- Core Facility Flow Cytometry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Muzaffer R. Ümütlü
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Regina Schinner
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Osman Öcal
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas Salvermoser
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marianna Alunni-Fabbroni
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - S. Nahum Goldberg
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Division of Image-guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Jens Ricke
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
8
|
Taheri G, Sardari M, Hermann DM, Sepehri H. N-Methyl-D-Aspartate Receptors Antagonist Prevents Secondary Ischemic Brain Injury Associated With Lipopolysaccharide-Induced Sepsis-Like State Presumably via Immunomodulatory Actions. Front Cell Neurosci 2022; 16:881088. [PMID: 35669105 PMCID: PMC9163802 DOI: 10.3389/fncel.2022.881088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Infection is a major reason for poor stroke outcomes, and sepsis is a major cause of stroke-elated deaths. We herein examined whether NMDA receptor blockade, which was reported to exert anti-inflammatory actions, protects against the deleterious consequences of lipopolysaccharide (LPS)-induced sepsis-like state in adult male NMRI mice exposed to transient intraluminal middle cerebral artery occlusion (MCAO). At 24 h post-ischemia, vehicle or Escherichia coli LPS (2 or 4 mg/kg) was intraperitoneally administered, whereas 30 min later vehicle or ketamine (10 mg/kg), which is a non-competitive NMDA receptor antagonist, was intraperitoneally applied. Delivery of LPS at a dosage of 4 mg/kg induced a sepsis-like state characterized by a rectal temperature reduction by ∼4.0°C, increased neurological deficits in Clark score, cylinder and open-field tests, increased brain infarct volume and reduced neuronal survival in the previously ischemic tissue. Notably, additional treatment with ketamine (10 mg/kg) significantly attenuated the sepsis-associated rectal temperature reduction by ∼1.5°C, reduced neurological deficits, reduced infarct volume, and promoted neuronal survival. Ketamine alone did not influence infarct volume or neurological deficits. Real-time PCR data analysis showed that GFAP, CD86, CD206, IL-1β, and IL-10 mRNA levels were significantly increased in ischemic brains of LPS-treated compared with vehicle-treated mice. Additional treatment with ketamine significantly decreased IL-1β and IL-10, but not GFAP, CD86, and CD206 mRNA levels. Our data show that ketamine at a dose that on its own does not confer neuroprotection reverses the adverse effects of LPS-induced sepsis-like state post-ischemia, presumably via immunomodulatory actions.
Collapse
Affiliation(s)
- Golnar Taheri
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Houri Sepehri
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
van der Geest KSM, Sandovici M, Nienhuis PH, Slart RHJA, Heeringa P, Brouwer E, Jiemy WF. Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica. Front Med (Lausanne) 2022; 9:902155. [PMID: 35733858 PMCID: PMC9207253 DOI: 10.3389/fmed.2022.902155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are two interrelated inflammatory diseases affecting patients above 50 years of age. Patients with GCA suffer from granulomatous inflammation of medium- to large-sized arteries. This inflammation can lead to severe ischemic complications (e.g., irreversible vision loss and stroke) and aneurysm-related complications (such as aortic dissection). On the other hand, patients suffering from PMR present with proximal stiffness and pain due to inflammation of the shoulder and pelvic girdles. PMR is observed in 40-60% of patients with GCA, while up to 21% of patients suffering from PMR are also affected by GCA. Due to the risk of ischemic complications, GCA has to be promptly treated upon clinical suspicion. The treatment of both GCA and PMR still heavily relies on glucocorticoids (GCs), although novel targeted therapies are emerging. Imaging has a central position in the diagnosis of GCA and PMR. While [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) has proven to be a valuable tool for diagnosis of GCA and PMR, it possesses major drawbacks such as unspecific uptake in cells with high glucose metabolism, high background activity in several non-target organs and a decrease of diagnostic accuracy already after a short course of GC treatment. In recent years, our understanding of the immunopathogenesis of GCA and, to some extent, PMR has advanced. In this review, we summarize the current knowledge on the cellular heterogeneity in the immunopathology of GCA/PMR and discuss how recent advances in specific tissue infiltrating leukocyte and stromal cell profiles may be exploited as a source of novel targets for imaging. Finally, we discuss prospective novel PET radiotracers that may be useful for the diagnosis and treatment monitoring in GCA and PMR.
Collapse
Affiliation(s)
- Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Wong HJ, Lim WH, Ng CH, Tan DJH, Bonney GK, Kow AWC, Huang DQ, Siddiqui MS, Noureddin M, Syn N, Muthiah MD. Predictive and Prognostic Roles of Gut Microbial Variation in Liver Transplant. Front Med (Lausanne) 2022; 9:873523. [PMID: 35620719 PMCID: PMC9127379 DOI: 10.3389/fmed.2022.873523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Patients undergoing liver transplant (LTX) typically confront a challenging postoperative journey. A dysbiotic gut microbiome is associated with the development of complications, including post-LTX allograft rejection, metabolic diseases and de novo or recurrent cancer. A major explanation of this are the bipartite interactions between the gut microbiota and host immunity, which modulates the alloimmune response towards the liver allograft. Furthermore, bacterial translocation from dysbiosis causes pathogenic changes in the concentrations of microbial metabolites like lipopolysaccharides, short-chain fatty acids (SCFAs) and Trimethylamine-N-Oxide, with links to cardiovascular disease development and diabetes mellitus. Gut dysbiosis also disrupts bile acid metabolism, with implications for various post-LTX metabolic diseases. Certain taxonomy of microbiota such as lactobacilli, F.prausnitzii and Bacteroides appear to be associated with these undesired outcomes. As such, an interesting but as yet unproven hypothesis exists as to whether induction of a “beneficial” composition of gut microbiota may improve prognosis in LTX patients. Additionally, there are roles of the microbiome as predictive and prognostic indicators for clinicians in improving patient care. Hence, the gut microbiome represents an exceptionally exciting avenue for developing novel prognostic, predictive and therapeutic applications.
Collapse
Affiliation(s)
- Hon Jen Wong
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Glenn K Bonney
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, National University Hospital Singapore, Singapore, Singapore
| | - Alfred W C Kow
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, National University Hospital Singapore, Singapore, Singapore
| | - Daniel Q Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Mohammad Shadab Siddiqui
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Mazen Noureddin
- Cedars-Sinai Fatty Liver Program, Division of Digestive and Liver Diseases, Department of Medicine, Comprehensive Transplant Centre, Cedars-Sinai Medical Centre, Los Angeles, CA, United States
| | - Nicholas Syn
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Mark D Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| |
Collapse
|
11
|
Expression of Peripheral Blood DCs CD86, CD80, and Th1/Th2 in Sepsis Patients and Their Value on Survival Prediction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4672535. [PMID: 35309834 PMCID: PMC8926526 DOI: 10.1155/2022/4672535] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022]
Abstract
Objective. To explore the expression of peripheral blood dendritic cells (DCs) CD86, CD80, and Th1/Th2 in patients with sepsis and their value on survival prediction. Methods. 118 patients with sepsis from January 2019 to December 2020 were selected, According to the prognosis, the patients were divided into the death group (
) and survival group (
). The general data and pathogen division of the two groups were collected, and the levels of peripheral blood DCs CD86, CD80, and Th1/Th2; APACHE II score; inflammatory factor (procalcitonin (PCT)); and cell growth chemokine (GRO) were compared between the two groups heparin-binding protein (HBP) and myocardial enzyme indexes (creatine kinase (CK), creatine kinase isozyme (CK-MB), and lactate dehydrogenase (LDH)) to explore the relationship between CD86, CD80, Th1/Th2, and various serological indexes and the evaluation value of prognosis. Results. 124 strains of pathogenic bacteria were isolated from 118 patients, including 78 strains of gram-negative bacteria (62.90%), 31 strains of Gram-positive bacteria (25.00%), and 15 strains of fungi (12.10%). The scores of CD86, CD80, Th1, Th2, Th1/Th2, and APACHE II in the dead group were higher than those in the surviving group, and the difference was statistically significant (
). PCT, GRO-α, HBP, LDH, CK-MB, and CK levels of patients in death group were higher than those in survival group, and the difference was statistically significant (
). The levels of peripheral blood DCs CD86, CD80, and Th1/Th2 were positively correlated with PCT, GRO-α, HBP, LDH, CK-MB, and CK (
). ROC curve analysis showed that the AUC of the combined detection of DCs CD86, CD80, and Th1/Th2 in peripheral blood was 0.951, which was higher than 0.882, 0.883, and 0.734 of single index (
). Conclusion. All patients with sepsis have immune imbalance, and the peripheral blood CD86, CD80, and Th1/Th2 of the dead patients are higher than those of the survivors. The combined detection of these three indicators has the highest predictive value for the prognosis of patients.
Collapse
|
12
|
Ng TSC, Allen HH, Rashidian M, Miller MA. Probing immune infiltration dynamics in cancer by in vivo imaging. Curr Opin Chem Biol 2022; 67:102117. [PMID: 35219177 PMCID: PMC9118268 DOI: 10.1016/j.cbpa.2022.102117] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022]
Abstract
Cancer immunotherapies typically aim to stimulate the accumulation and activity of cytotoxic T-cells or pro-inflammatory antigen-presenting cells, reduce immunosuppressive myeloid cells or regulatory T-cells, or elicit some combination of effects thereof. Notwithstanding the encouraging results, immunotherapies such as PD-1/PD-L1-targeted immune checkpoint blockade act heterogeneously across individual patients. It remains challenging to predict and monitor individual responses, especially across multiple sites of metastasis or sites of potential toxicity. To address this need, in vivo imaging of both adaptive and innate immune cell populations has emerged as a tool to quantify spatial leukocyte accumulation in tumors non-invasively. Here we review recent progress in the translational development of probes for in vivo leukocyte imaging, focusing on complementary perspectives provided by imaging of T-cells, phagocytic macrophages, and their responses to therapy.
Collapse
Affiliation(s)
- Thomas S C Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Boston, MA 02114, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, United States
| | - Harris H Allen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02115, United States
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02115, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, United States
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Boston, MA 02114, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, United States.
| |
Collapse
|
13
|
Imaging Inflammation with Positron Emission Tomography. Biomedicines 2021; 9:biomedicines9020212. [PMID: 33669804 PMCID: PMC7922638 DOI: 10.3390/biomedicines9020212] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
The impact of inflammation on the outcome of many medical conditions such as cardiovascular diseases, neurological disorders, infections, cancer, and autoimmune diseases has been widely acknowledged. However, in contrast to neurological, oncologic, and cardiovascular disorders, imaging plays a minor role in research and management of inflammation. Imaging can provide insights into individual and temporospatial biology and grade of inflammation which can be of diagnostic, therapeutic, and prognostic value. There is therefore an urgent need to evaluate and understand current approaches and potential applications for imaging of inflammation. This review discusses radiotracers for positron emission tomography (PET) that have been used to image inflammation in cardiovascular diseases and other inflammatory conditions with a special emphasis on radiotracers that have already been successfully applied in clinical settings.
Collapse
|