1
|
Sant’Angelo D, Descamps G, Lecomte V, Stanicki D, Penninckx S, Dragan T, Van Gestel D, Laurent S, Journe F. Therapeutic Approaches with Iron Oxide Nanoparticles to Induce Ferroptosis and Overcome Radioresistance in Cancers. Pharmaceuticals (Basel) 2025; 18:325. [PMID: 40143107 PMCID: PMC11945075 DOI: 10.3390/ph18030325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
The emergence of nanotechnology in medicine, particularly using iron oxide nanoparticles (IONPs), may impact cancer treatment strategies. IONPs exhibit unique properties, such as superparamagnetism, biocompatibility, and ease of surface modification, making them ideal candidates for imaging, and therapeutic interventions. Their application in targeted drug delivery, especially with traditional chemotherapeutic agents like cisplatin, has shown potential in overcoming limitations such as low bioavailability and systemic toxicity of chemotherapies. Moreover, IONPs, by releasing iron ions, can induce ferroptosis, a form of iron-dependent cell death, which offers a promising pathway to reverse radio- and chemoresistance in cancer therapy. In particular, IONPs demonstrate significant potential as radiosensitisers, enhancing the effects of radiotherapy by promoting reactive oxygen species (ROS) generation, lipid peroxidation, and modulating the tumour microenvironment to stimulate antitumour immune responses. This review explores the multifunctional roles of IONPs in radiosensitisation through ferroptosis induction, highlighting their promise in advancing treatment for head and neck cancers. Additional research is crucial to fully addressing their potential in clinical settings, offering a novel approach to personalised cancer treatment.
Collapse
Affiliation(s)
- Dorianne Sant’Angelo
- Department of Human Biology and Toxicology (Cancer Research Unit), Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institute Jules Bordet, HUB, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Géraldine Descamps
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons (UMONS), 7000 Mons, Belgium; (G.D.); (V.L.); (D.S.); (S.L.)
| | - Valentin Lecomte
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons (UMONS), 7000 Mons, Belgium; (G.D.); (V.L.); (D.S.); (S.L.)
| | - Dimitri Stanicki
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons (UMONS), 7000 Mons, Belgium; (G.D.); (V.L.); (D.S.); (S.L.)
| | - Sébastien Penninckx
- Department of Medical Physics, Institut Jules Bordet, HUB, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
- Department of Radiotherapy, Institute Jules Bordet, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (T.D.); (D.V.G.)
| | - Tatiana Dragan
- Department of Radiotherapy, Institute Jules Bordet, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (T.D.); (D.V.G.)
| | - Dirk Van Gestel
- Department of Radiotherapy, Institute Jules Bordet, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (T.D.); (D.V.G.)
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons (UMONS), 7000 Mons, Belgium; (G.D.); (V.L.); (D.S.); (S.L.)
| | - Fabrice Journe
- Department of Human Biology and Toxicology (Cancer Research Unit), Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institute Jules Bordet, HUB, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
2
|
Feng Y, Pannem S, Hodge S, Rounds C, Tichauer KM, Paulsen KD, Samkoe KS. Quantitative pharmacokinetic and biodistribution studies for fluorescent imaging agents. BIOMEDICAL OPTICS EXPRESS 2024; 15:1861-1877. [PMID: 38495714 PMCID: PMC10942698 DOI: 10.1364/boe.504878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/02/2023] [Accepted: 01/22/2024] [Indexed: 03/19/2024]
Abstract
Pharmacokinetics and biodistribution studies are essential for characterizing fluorescent agents in vivo. However, few simple methods based on fluorescence imaging are available that account for tissue optical properties and sample volume differences. We describe a method for simultaneously quantifying mean fluorescence intensity of whole blood and homogenized tissues in glass capillary tubes for two fluorescent agents, ABY-029 and IRDye 680LT, using wide-field imaging and tissue-specific calibration curves. All calibration curves demonstrated a high degree of linearity with mean R2 = 0.99 ± 0.01 and RMSE = 0.12 ± 0.04. However, differences between linear regressions indicate that tissue-specific calibration curves are required for accurate concentration recovery. The lower limit of quantification (LLOQ) for all samples tested was determined to be < 0.3 nM for ABY-029 and < 0.4 nM for IRDye 680LT.
Collapse
Affiliation(s)
- Yichen Feng
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH 03755, USA
| | - Sanjana Pannem
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA
| | - Sassan Hodge
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA
| | - Cody Rounds
- Department of Biomedical Engineering, Illinois Institute of Technology, 10 West 35 Street, Chicago, IL 60616, USA
| | - Kenneth M. Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, 10 West 35 Street, Chicago, IL 60616, USA
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA
| | - Kimberley S. Samkoe
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH 03755, USA
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA
| |
Collapse
|
3
|
Shah JV, Siebert JN, Zhao X, He S, Riman RE, Tan MC, Pierce MC, Lattime EC, Ganapathy V, Moghe PV. Shortwave-Infrared-Emitting Nanoprobes for CD8 Targeting and In Vivo Imaging of Cytotoxic T Cells in Breast Cancer. ADVANCED NANOBIOMED RESEARCH 2024; 4:2300092. [PMID: 39554690 PMCID: PMC11566364 DOI: 10.1002/anbr.202300092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Indexed: 11/19/2024] Open
Abstract
Checkpoint immunotherapy has made great strides in the treatment of solid tumors, but many patients do not respond to immune checkpoint inhibitors. Identification of tumor-infiltrating cytotoxic T cells (CTLs) has the potential to stratify patients and monitor immunotherapy responses. In this study, the design of cluster of differentiation (CD8+) T cell-targeted nanoprobes that emit shortwave infrared (SWIR) light in the second tissue-transparent window for noninvasive, real-time imaging of CTLs in murine models of breast cancer is presented. SWIR-emitting rare-earth nanoparticles encapsulated in human serum albumin are conjugated with anti-CD8α to target CTLs with high specificity. CTL targeting is validated in vitro through binding of nanoprobes to primary mouse CTLs. The potential for the use of SWIR fluorescence intensity to determine CTL presence is validated in two syngeneic mammary fat pad tumor models, EMT6 and 4T1, which differ in immune infiltration. SWIR imaging using CD8-targeted nanoprobes successfully identifies the presence of CTLs in the more immunogenic EMT6 model, while imaging confirms the lack of substantial immune infiltration in the nonimmunogenic 4T1 model. In this work, the opportunity for SWIR imaging using CD8-targeted nanoprobes to assess CTL infiltration in tumors for the stratification and monitoring of responders to checkpoint immunotherapy is highlighted.
Collapse
Affiliation(s)
- Jay V. Shah
- Department of Biomedical EngineeringRutgers University599 Taylor RdPiscatawayNJ08854USA
| | - Jake N. Siebert
- Department of Biomedical EngineeringRutgers University599 Taylor RdPiscatawayNJ08854USA
| | - Xinyu Zhao
- Engineering Product DevelopmentSingapore University of Technology and Design8 Somapah RdTampinesSingapore487372Singapore
| | - Shuqing He
- Engineering Product DevelopmentSingapore University of Technology and Design8 Somapah RdTampinesSingapore487372Singapore
| | - Richard E. Riman
- Department of Materials Science and EngineeringRutgers University607 Taylor RdPiscatawayNJ08854USA
| | - Mei Chee Tan
- Engineering Product DevelopmentSingapore University of Technology and Design8 Somapah RdTampinesSingapore487372Singapore
| | - Mark C. Pierce
- Department of Biomedical EngineeringRutgers University599 Taylor RdPiscatawayNJ08854USA
| | - Edmund C. Lattime
- Rutgers Cancer Institute of New Jersey195 Little Albany StNew BrunswickNJ08901USA
| | - Vidya Ganapathy
- Department of Biomedical EngineeringRutgers University599 Taylor RdPiscatawayNJ08854USA
| | - Prabhas V. Moghe
- Department of Biomedical EngineeringRutgers University599 Taylor RdPiscatawayNJ08854USA
- Department of Chemical and Biochemical EngineeringRutgers University98 Brett RdPiscatawayNJ08854USA
| |
Collapse
|
4
|
Van Namen A, Jandhyala S, Spatarelu CP, Tichauer KM, Samkoe KS, Luke GP. Multiplex Ultrasound Imaging of Perfluorocarbon Nanodroplets Enabled by Decomposition of Postvaporization Dynamics. NANO LETTERS 2024; 24:209-214. [PMID: 38156794 DOI: 10.1021/acs.nanolett.3c03719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Despite the real-time, nonionizing, and cost-effective nature of ultrasound imaging, there is a dearth of methods to visualize two or more populations of contrast agents simultaneously─a technique known as multiplex imaging. Here, we present a new approach to multiplex ultrasound imaging using perfluorocarbon (PFC) nanodroplets. The nanodroplets, which undergo a liquid-to-gas phase transition in response to an acoustic trigger, act as activatable contrast agents. This work characterized the dynamic responses of two PFC nanodroplets with boiling points of 28 and 56 °C. These characteristic responses were then used to demonstrate that the relative concentrations of the two populations of PFC nanodroplets could be accurately measured in the same imaging volume within an average error of 1.1%. Overall, the findings indicate the potential of this approach for multiplex ultrasound imaging, allowing for the simultaneous visualization of multiple molecular targets simultaneously.
Collapse
Affiliation(s)
- Austin Van Namen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Sidhartha Jandhyala
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | | | - Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
- Translational Engineering in Cancer Research Program, Dartmouth Cancer Center, Lebanon, New Hampshire 03766, United States
| | - Geoffrey P Luke
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
- Translational Engineering in Cancer Research Program, Dartmouth Cancer Center, Lebanon, New Hampshire 03766, United States
| |
Collapse
|
5
|
Chen Y, Streeter SS, Hunt B, Sardar HS, Gunn JR, Tafe LJ, Paydarfar JA, Pogue BW, Paulsen KD, Samkoe KS. Fluorescence molecular optomic signatures improve identification of tumors in head and neck specimens. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1009638. [PMID: 36875185 PMCID: PMC9975724 DOI: 10.3389/fmedt.2023.1009638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023] Open
Abstract
Background Fluorescence molecular imaging using ABY-029, an epidermal growth factor receptor (EGFR)-targeted, synthetic Affibody peptide labeled with a near-infrared fluorophore, is under investigation for surgical guidance during head and neck squamous cell carcinoma (HNSCC) resection. However, tumor-to-normal tissue contrast is confounded by intrinsic physiological limitations of heterogeneous EGFR expression and non-specific agent uptake. Objective In this preliminary study, radiomic analysis was applied to optical ABY-029 fluorescence image data for HNSCC tissue classification through an approach termed "optomics." Optomics was employed to improve tumor identification by leveraging textural pattern differences in EGFR expression conveyed by fluorescence. The study objective was to compare the performance of conventional fluorescence intensity thresholding and optomics for binary classification of malignant vs. non-malignant HNSCC tissues. Materials and Methods Fluorescence image data collected through a Phase 0 clinical trial of ABY-029 involved a total of 20,073 sub-image patches (size of 1.8 × 1.8 mm2) extracted from 24 bread-loafed slices of HNSCC surgical resections originating from 12 patients who were stratified into three dose groups (30, 90, and 171 nanomoles). Each dose group was randomly partitioned on the specimen-level 75%/25% into training/testing sets, then all training and testing sets were aggregated. A total of 1,472 standardized radiomic features were extracted from each patch and evaluated by minimum redundancy maximum relevance feature selection, and 25 top-ranked features were used to train a support vector machine (SVM) classifier. Predictive performance of the SVM classifier was compared to fluorescence intensity thresholding for classifying testing set image patches with histologically confirmed malignancy status. Results Optomics provided consistent improvement in prediction accuracy and false positive rate (FPR) and similar false negative rate (FNR) on all testing set slices, irrespective of dose, compared to fluorescence intensity thresholding (mean accuracies of 89% vs. 81%, P = 0.0072; mean FPRs of 12% vs. 21%, P = 0.0035; and mean FNRs of 13% vs. 17%, P = 0.35). Conclusions Optomics outperformed conventional fluorescence intensity thresholding for tumor identification using sub-image patches as the unit of analysis. Optomics mitigate diagnostic uncertainties introduced through physiological variability, imaging agent dose, and inter-specimen biases of fluorescence molecular imaging by probing textural image information. This preliminary study provides a proof-of-concept that applying radiomics to fluorescence molecular imaging data offers a promising image analysis technique for cancer detection in fluorescence-guided surgery.
Collapse
Affiliation(s)
- Yao Chen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Samuel S. Streeter
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Brady Hunt
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Hira S. Sardar
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Jason R. Gunn
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Laura J. Tafe
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Pathology, Dartmouth Health, Lebanon, NH, United States
| | - Joseph A. Paydarfar
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Surgery, Dartmouth Health, Lebanon, NH, United States
- Department of Otolaryngology, Dartmouth Health, Lebanon, NH, United States
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Kimberley S. Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Surgery, Dartmouth Health, Lebanon, NH, United States
| |
Collapse
|
6
|
Wang C, Hodge S, Ravi D, Chen EY, Hoopes PJ, Tichauer KM, Samkoe KS. Rapid and Quantitative Intraoperative Pathology-Assisted Surgery by Paired-Agent Imaging-Derived Confidence Map. Mol Imaging Biol 2023; 25:190-202. [PMID: 36315374 PMCID: PMC11841742 DOI: 10.1007/s11307-022-01780-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE In nonmetastatic head and neck cancer treatment, surgical margin status is the most important prognosticator of recurrence and patient survival. Fresh frozen sectioning (FFS) of tissue margins is the standard of care for intraoperative margin assessment. However, FFS is time intensive, and its accuracy is not consistent among institutes. Mapping the epidermal growth factor receptor (EGFR) using paired-agent imaging (PAI) has the potential to provide more consistent intraoperative margin assessment in a fraction of the time as FFS. PROCEDURES PAI was carried out through IV injection of an anti-epidermal growth factor receptor (EGFR) affibody molecule (ABY-029, eIND 122,681) and an untargeted IRDye680LT carboxylate. Imaging was performed on 4 µm frozen sections from three oral squamous cell carcinoma xenograft mouse models (n = 24, 8 samples per cell line). The diagnostic ability and tumor contrast were compared between binding potential, targeted, and untargeted images. Confidence maps were constructed based on group histogram-derived tumor probability curves. Tumor differentiability and contrast by confidence maps were evaluated. RESULTS PAI outperformed ABY-029 and IRDye 680LT alone, demonstrating the highest individual receiver operating characteristic (ROC) curve area under the curve (PAI AUC: 0.91, 0.90, and 0.79) and contrast-to-noise ratio (PAI CNR: 1, 1.1, and 0.6) for FaDu, Det 562, and A253. PAI confidence maps (PAI CM) maintain high tumor diagnostic ability (PAI CMAUC: 0.91, 0.90, and 0.79) while significantly enhancing tumor contrast (PAI CMCNR: 1.5, 1.3, and 0.8) in FaDu, Det 562, and A253. Additionally, the PAI confidence map allows avascular A253 to be differentiated from a healthy tissue with significantly higher contrast than PAI. Notably, PAI does not require additional staining and therefore significantly reduces the tumor delineation time in a 5 [Formula: see text] 5 mm slice from ~ 35 min to under a minute. CONCLUSION This study demonstrated that PAI improved tumor detection in frozen sections with high diagnostic accuracy and rapid analysis times. The novel PAI confidence map improved the contrast in vascular tumors and differentiability in avascular tumors. With a larger database, the PAI confidence map promises to standardize fluorescence imaging in intraoperative pathology-assisted surgery (IPAS).
Collapse
Affiliation(s)
- Cheng Wang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Sassan Hodge
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Divya Ravi
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Eunice Y Chen
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - P Jack Hoopes
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
7
|
Gibbs SL, Delikatny EJ. Editorial to the Special Issue Entitled "Optical Surgical Navigation". Mol Imaging Biol 2023; 25:1-2. [PMID: 36729349 DOI: 10.1007/s11307-023-01806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Summer L Gibbs
- Biomedical Engineering Department, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201, USA.
| | - Edward J Delikatny
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Petusseau AF, Bruza P, Pogue BW. Protoporphyrin IX delayed fluorescence imaging: a modality for hypoxia-based surgical guidance. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:106005. [PMID: 36217225 PMCID: PMC9549807 DOI: 10.1117/1.jbo.27.10.106005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE Hypoxia imaging for surgical guidance has never been possible, yet it is well known that most tumors have microregional chronic and/or cycling hypoxia present as well as chaotic blood flow. The ability to image oxygen partial pressure (pO2) is therefore a unique control of tissue metabolism and can be used in a range of disease applications to understand the complex biochemistry of oxygen supply and consumption. AIM Delayed fluorescence (DF) from the endogenous molecule protoporphyrin IX (PpIX) has been shown to be a truly unique reporter of the local oxygen partial pressure in tissue. PpIX is endogenously synthesized by mitochondria in most tissues, and the particular property of DF emission is directly related to low microenvironmental oxygen concentration. Here, it is shown that PpIX has a unique emission in hypoxic tumor tissue regions, which is measured as a DF signal in the red to near-infrared spectrum. APPROACH A time-gated imaging system was used for PpIX DF for wide field direct mapping of pO2 changes. Acquiring both prompt and DF in a rapid sequential cycle allowed for imaging oxygenation in a way that was insensitive to the PpIX concentration. By choosing adequate parameters, the video rate acquisition of pO2 images could be achieved, providing real-time tissue metabolic information. RESULTS In this report, we show the first demonstration of imaging hypoxia signals from PpIX in a pancreatic cancer model, exhibiting >5X contrast relative to surrounding normal oxygenated tissues. Additionally, tissue palpation amplifies the signal and provides intuitive temporal contrast based upon neoangiogenic blood flow differences. CONCLUSIONS PpIX DF provides a mechanism for tumor contrast that could easily be translated to human use as an intrinsic contrast mechanism for oncologic surgical guidance.
Collapse
Affiliation(s)
- Arthur F. Petusseau
- Dartmouth College, Thayer School of Engineering and Dartmouth Cancer Center, Hanover, New Hampshire, United States
| | - Petr Bruza
- Dartmouth College, Thayer School of Engineering and Dartmouth Cancer Center, Hanover, New Hampshire, United States
| | - Brian W. Pogue
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| |
Collapse
|
9
|
Bhandari C, Fakhry J, Eroy M, Song JJ, Samkoe K, Hasan T, Hoyt K, Obaid G. Towards Photodynamic Image-Guided Surgery of Head and Neck Tumors: Photodynamic Priming Improves Delivery and Diagnostic Accuracy of Cetuximab-IRDye800CW. Front Oncol 2022; 12:853660. [PMID: 35837101 PMCID: PMC9273965 DOI: 10.3389/fonc.2022.853660] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Fluorescence image-guided surgery (IGS) using antibody conjugates of the fluorophore IRDye800CW have revolutionized the surgical debulking of tumors. Cetuximab, an anti-epidermal growth factor receptor (EGFR) monoclonal antibody, conjugated to IRDye800CW (Cet-IRDye800) is the first molecular targeted antibody probe to be used for IGS in head and neck cancer patients. In addition to surgical debulking, Cetuximab-targeted photodynamic therapy (photoimmunotherapy; PIT) is emerging in the clinic as a powerful modality for head and neck tumor photodestruction. A plethora of other photoactivable agents are also in clinical trials for photodynamic-based therapies of head and neck cancer. Considering the vascular and stromal modulating effects of sub-therapeutic photodynamic therapy, namely photodynamic priming (PDP), this study explores the potential synergy between PDP and IGS for a novel photodynamic image-guided surgery (P-IGS) strategy. To the best of our knowledge, this is the first demonstration that PDP of the tumor microenvironment can augment the tumor delivery of full-length antibodies, namely Cet-IRDye800. In this study, we demonstrate a proof-of-concept that PDP primes orthotopic FaDu human head and neck tumors in mice for P-IGS by increasing the delivery of Cet-IRDye800 by up to 138.6%, by expediting its interstitial accumulation by 10.5-fold, and by increasing its fractional tumor coverage by 49.5% at 1 h following Cet-IRDye800 administration. Importantly, PDP improves the diagnostic accuracy of tumor detection by up to 264.2% with respect to vicinal salivary glands at 1 h. As such, PDP provides a time-to-surgery benefit by reducing the time to plateau 10-fold from 25.7 h to 2.5 h. We therefore propose that a pre-operative PDP regimen can expedite and augment the accuracy of IGS-mediated surgical debulking of head and neck tumors and reduce the time-to-IGS. Furthermore, this P-IGS regimen, can also enable a forward-looking post-operative protocol for the photodestruction of unresectable microscopic disease in the surgical bed. Beyond this scope, the role of PDP in the homogenous delivery of diagnostic, theranostic and therapeutic antibodies in solid tumors is of considerable significance to the wider community.
Collapse
Affiliation(s)
- Chanda Bhandari
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - John Fakhry
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Menitte Eroy
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Jane Junghwa Song
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Kimberley Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
10
|
Jia D, Wang F, Lu Y, Hu P, Wang R, Li G, Liu R, Li J, Liu H, Fan Q, Yuan F. Fusion of an EGFR-antagonistic affibody enhances the anti-tumor effect of TRAIL to EGFR positive tumors. Int J Pharm 2022; 620:121746. [DOI: 10.1016/j.ijpharm.2022.121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/28/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
|