1
|
Chen-Yoshikawa TF, Nakamura S, Ueno H, Kadomatsu Y, Kato T, Mizuno T. Current Status and Future Perspectives of Preoperative and Intraoperative Marking in Thoracic Surgery. Cancers (Basel) 2024; 16:3284. [PMID: 39409903 PMCID: PMC11476332 DOI: 10.3390/cancers16193284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The widespread implementation of lung cancer screening and thin-slice computed tomography (CT) has led to the more frequent detection of small nodules, which are commonly referred to thoracic surgeons. Surgical resection is the final diagnostic and treatment option for such nodules; however, surgeons must perform preoperative or intraoperative markings for the identification of such nodules and their precise resection. Historically, hook-wire marking has been performed more frequently worldwide; however, lethal complications, such as air embolism, have been reported. Therefore, several surgeons have recently attempted to develop novel preoperative and intraoperative markers. For example, transbronchial markings, such as virtual-assisted lung mapping and intraoperative markings using cone-beam computed tomography, have been developed. This review explores various marking methods that have been practically applied for a better understanding of preoperative and intraoperative markings in thoracic surgery. Recently, several attempts have been made to perform intraoperative molecular imaging and dynamic virtual three-dimensional computed tomography for the localization, diagnosis, and margin assessment of small nodules. In this narrative review, the current status and future perspectives of preoperative and intraoperative markings in thoracic surgery are examined for a better understanding of these techniques.
Collapse
Affiliation(s)
- Toyofumi Fengshi Chen-Yoshikawa
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (S.N.); (H.U.); (Y.K.); (T.K.); (T.M.)
| | | | | | | | | | | |
Collapse
|
2
|
Espinoza AF, Kureti P, Patel RH, Do SL, Govindu SR, Armbruster BW, Urbicain M, Patel KR, Lopez-Terrada D, Vasudevan SA, Woodfield SE. An indocyanine green-based liquid biopsy test for circulating tumor cells for pediatric liver cancer. Hepatol Commun 2024; 8:e0435. [PMID: 38727682 PMCID: PMC11093570 DOI: 10.1097/hc9.0000000000000435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/05/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Hepatoblastoma and HCC are the most common malignant hepatocellular tumors seen in children. The aim of this study was to develop a liquid biopsy test for circulating tumor cells (CTCs) for these tumors that would be less invasive and provide real-time information about tumor response to therapy. METHODS For this test, we utilized indocyanine green (ICG), a far-red fluorescent dye used clinically to identify malignant liver cells during surgery. We assessed ICG accumulation in cell lines using fluorescence microscopy and flow cytometry. For our CTC test, we developed a panel of liver tumor-specific markers, including ICG, Glypican-3, and DAPI, and tested it with cell lines and noncancer control blood samples. We then used this panel to analyze whole-blood samples for CTC burden with a cohort of 15 patients with hepatoblastoma and HCC and correlated with patient characteristics and outcomes. RESULTS We showed that ICG accumulation is specific to liver cancer cells, compared to nonmalignant liver cells, non-liver solid tumor cells, and other nonmalignant cells, and can be used to identify liver tumor cells in a mixed population of cells. Experiments with the ICG/Glypican-3/DAPI panel showed that it specifically tagged malignant liver cells. Using patient samples, we found that CTC burden from sequential blood samples from the same patients mirrored the patients' responses to therapy. CONCLUSIONS Our novel ICG-based liquid biopsy test for CTCs can be used to specifically detect and quantify CTCs in the blood of pediatric patients with liver cancer.
Collapse
Affiliation(s)
- Andres F. Espinoza
- Pediatric Surgical Oncology Laboratory, Michael E. DeBakey Department of Surgery, Divisions of Pediatric Surgery and Surgical Research, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Pavan Kureti
- Pediatric Surgical Oncology Laboratory, Michael E. DeBakey Department of Surgery, Divisions of Pediatric Surgery and Surgical Research, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Roma H. Patel
- Pediatric Surgical Oncology Laboratory, Michael E. DeBakey Department of Surgery, Divisions of Pediatric Surgery and Surgical Research, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Susan L. Do
- Pediatric Surgical Oncology Laboratory, Michael E. DeBakey Department of Surgery, Divisions of Pediatric Surgery and Surgical Research, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Saiabhiroop R. Govindu
- Pediatric Surgical Oncology Laboratory, Michael E. DeBakey Department of Surgery, Divisions of Pediatric Surgery and Surgical Research, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Bryan W. Armbruster
- Pediatric Surgical Oncology Laboratory, Michael E. DeBakey Department of Surgery, Divisions of Pediatric Surgery and Surgical Research, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Martin Urbicain
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children’s Department of Pathology, Houston, Texas, USA
| | - Kalyani R. Patel
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children’s Department of Pathology, Houston, Texas, USA
| | - Dolores Lopez-Terrada
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children’s Department of Pathology, Houston, Texas, USA
| | - Sanjeev A. Vasudevan
- Pediatric Surgical Oncology Laboratory, Michael E. DeBakey Department of Surgery, Divisions of Pediatric Surgery and Surgical Research, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah E. Woodfield
- Pediatric Surgical Oncology Laboratory, Michael E. DeBakey Department of Surgery, Divisions of Pediatric Surgery and Surgical Research, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Kravchenko Y, Sikora K, Wireko AA, Lyndin M. Fluorescence visualization for cancer DETECTION: EXPERIENCE and perspectives. Heliyon 2024; 10:e24390. [PMID: 38293525 PMCID: PMC10827512 DOI: 10.1016/j.heliyon.2024.e24390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The current review focuses on the latest advances in the improvement and application of fluorescence imaging technology. Near-infrared (NIR) fluorescence imaging is a promising new technique that uses non-specific fluorescent agents and targeted fluorescent tracers combined with a dedicated camera to better navigate and visualize tumors. Fluorescence-guided surgery (FGS) is used to perform various tasks, helping the surgeon to distinguish lymphatic vessels and nodes from surrounding tissues easily and quickly assess the perfusion of the planned resection area, including intraoperative visualization of metastases. The results of the insertion of fluorescence visualization as an auxiliary method to cancer detection and high-risk metastatic lesions in clinical practice have demonstrated enthusiastic results and huge potential. However, intraoperative fluorescence visualization must not be considered as a main diagnostic or treatment method but as an aid to the surgeon. Thus, fluorescence study does not dispense the diagnostic gold standards of benign or malignant tumors (conventional examination, biopsy, ultrasonography and computed tomography, etc.) and can be done usually during intraoperative treatment. Moreover, as fluorescence surgery and fluorescence diagnostic techniques continue to improve, it is likely that they will evolve towards targeted fluorescence imaging probes that will increasingly target a specific type of cancer cell. The most important point remains the search for highly selective messengers of fluorescent labels, which make it possible to identify tumor cells exclusively in the affected organs and indicate to surgeons the boundaries of their spread and metastasis.
Collapse
Affiliation(s)
- Yaroslav Kravchenko
- Sumy State University, Sumy, Ukraine
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan, Poland
| | | | | | - Mykola Lyndin
- Sumy State University, Sumy, Ukraine
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Essen, 45147, Germany
| |
Collapse
|
4
|
Bou-Samra P, Chang A, Guo E, Azari F, Kennedy G, Santini JT, Bensen ES, Jarrar D, Singhal S. Cathepsin detection to identify malignant cells during robotic pulmonary resection. Transl Lung Cancer Res 2023; 12:2370-2380. [PMID: 38205214 PMCID: PMC10775009 DOI: 10.21037/tlcr-23-370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/25/2023] [Indexed: 01/12/2024]
Abstract
Background Intraoperative molecular imaging (IMI) uses a fluorescent probe to identify occult cancers. VGT-309 is a quenched activity-based probe that is activated in the presence of cathepsins, enzymes overexpressed in cancer cells, and detected by near-infrared (NIR) light. This study aims to evaluate the sensitivity and the positive predictive value (PPV) of robotic-assisted thoracic surgery (RATS) with intraoperative molecular imaging (RIMI) using VGT-309 to localize tumors using NIR light to detect areas with increased cathepsin activity. Our secondary outcome was to compare RIMI to video-assisted thoracic surgery (VATS) with intraoperative molecular imaging (VIMI). Methods In a phase 2 clinical trial at the University of Pennsylvania, patients (n=10) with suspicious pulmonary lesions underwent RATS. First, white light was used followed by RIMI to identify tissues with increased cathepsin activity. Then, VIMI was performed to compare the sensitivity and PPV in identifying the cathepsin activity. The resected specimens were then evaluated for fluorescence and underwent histopathological analysis for cathepsin expression. Image analysis was performed using ImageJ software. Statistical analysis was conducted using IBM SPSS Statistics software. A P value of 0.05 or less was considered significant. Results RATS with white light identified 6 out of the 10 pulmonary nodules, whereas adding RIMI identified an additional 4 more pulmonary nodules. RIMI and VIMI were able to detect the same 8/10 (80%) nodules. The addition of VIMI did not identify any lesions that RIMI may have missed. The mean fluorescence intensity of tumors visualized by RIMI was 115.81 A.U. [standard deviation (SD) =58.57] compared to 95.6 A.U. (SD =14.81) by VIMI (P=0.41). The mean tumor-to-background ratios (TBR) of tumors visualized by RIMI was 9.20 (SD =9.12) compared to 2.29 A.U. (SD =1.11) using VIMI (P=0.1). The sensitivity of RIMI and VIMI was 88.9% which was superior to that of RATS (55.6%). The PPV of RATS was 83.3% compared to 100% in RIMI and VIMI. Conclusions RIMI is a valuable option for visualization of occult disease using VGT-309-guided IMI through identifying areas of increased cathepsin activity. In this small series, RIMI and VIMI showed clinical equivalence in sensitivity and PPV of detecting cathepsin activity.
Collapse
Affiliation(s)
- Patrick Bou-Samra
- Department of Surgery, The University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA, USA
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA, USA
| | - Austin Chang
- Department of Surgery, The University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA, USA
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA, USA
| | - Emily Guo
- Department of Surgery, The University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA, USA
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA, USA
| | - Feredun Azari
- Department of Surgery, The University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA, USA
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA, USA
| | - Gregory Kennedy
- Department of Surgery, The University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA, USA
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA, USA
| | | | | | - Doraid Jarrar
- Department of Surgery, The University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA, USA
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA, USA
| | - Sunil Singhal
- Department of Surgery, The University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA, USA
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine, Pennsylvania, PA, USA
| |
Collapse
|
5
|
Jeon OH, Choi BH, Rho J, Kim K, Lee JH, Lee J, Kim BM, Kim HK. Optimization of Indocyanine Green for Intraoperative Fluorescent Image-Guided Localization of Lung Cancer; Analysis Based on Solid Component of Lung Nodule. Cancers (Basel) 2023; 15:3643. [PMID: 37509304 PMCID: PMC10377801 DOI: 10.3390/cancers15143643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
ICG fluorescence imaging has been used to detect lung cancer; however, there is no consensus regarding the optimization of the indocyanine green (ICG) injection method. The aim of this study was to determine the optimal dose and timing of ICG for lung cancer detection using animal models and to evaluate the feasibility of ICG fluorescence in lung cancer patients. In a preclinical study, twenty C57BL/6 mice with footpad cancer and thirty-three rabbits with VX2 lung cancer were used. These animals received an intravenous injection of ICG at 0.5, 1, 2, or 5 mg/kg, and the cancers were detected using a fluorescent imaging system after 3, 6, 12, and 24 h. In a clinical study, fifty-one patients diagnosed with lung cancer and scheduled to undergo surgery were included. Fluorescent images of lung cancer were obtained, and the fluorescent signal was quantified. Based on a preclinical study, the optimal injection method for lung cancer detection was 2 mg/kg ICG 12 h before surgery. Among the 51 patients, ICG successfully detected 37 of 39 cases with a consolidation-to-tumor (C/T) ratio of >50% (TNR: 3.3 ± 1.2), while it failed in 12 cases with a C/T ratio ≤ 50% and 2 cases with anthracosis. ICG injection at 2 mg/kg, 12 h before surgery was optimal for lung cancer detection. Lung cancers with the C/T ratio > 50% were successfully detected using ICG with a detection rate of 95%, but not with the C/T ratio ≤ 50%. Therefore, further research is needed to develop fluorescent agents targeting lung cancer.
Collapse
Affiliation(s)
- Ok Hwa Jeon
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Byeong Hyeon Choi
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jiyun Rho
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyungsu Kim
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jun Hee Lee
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Jinhwan Lee
- Department of Pathology, Myongji Hospital, Goyang 10475, Republic of Korea
| | - Beop-Min Kim
- Department of Biomedical Engineering, Korea University College of Health Science, Seoul 02841, Republic of Korea
| | - Hyun Koo Kim
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Espinoza AF, Kureti P, Patel RH, Govindu SR, Armbruster BW, Urbicain M, Patel KR, Lopez-Terrada D, Vasudevan SA, Woodfield SE. An indocyanine green-based liquid biopsy test for circulating tumor cells for pediatric liver cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547557. [PMID: 37461615 PMCID: PMC10349946 DOI: 10.1101/2023.07.03.547557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background and Aims Hepatoblastoma (HB) and hepatocellular carcinoma (HCC) are the most common malignant hepatocellular tumors seen in children. The aim of this work was to develop a liquid biopsy test for circulating tumor cells (CTCs) for these tumors that would be less invasive and provide information about the real-time state of tumors in response to therapies. Methods For this test, we utilized indocyanine green (ICG), a far-red fluorescent dye that is used clinically to identify malignant liver cells in the body during surgery. We assessed ICG accumulation in cell lines with fluorescence microscopy and flow cytometry. For our CTC test, we developed a panel of liver tumor-specific markers, ICG, Glypican-3 (GPC3), and DAPI and tested this panel with cell lines and non-cancer control blood samples. We then used this panel to analyze whole blood samples for CTC burden with a cohort of 14 HB and HCC patients and correlated with patient characteristics and outcomes. Results We showed that ICG accumulation is specific to liver cancer cells, compared to non-malignant liver cells, non-liver solid tumor cells, and non-malignant cells and can be used to identify liver tumor cells in a mixed population of cells. Experiments with the ICG/GPC3/DAPI panel showed that it specifically tagged malignant liver cells. With patient samples, we found that CTC burden from sequential blood samples from the same patients mirrored the patients' responses to therapy. Conclusions Our novel ICG-based liquid biopsy test for CTCs can be used to specifically count CTCs in the blood of pediatric liver cancer patients. Impact and implications This manuscript represents the first report of circulating tumor cells in the blood of pediatric liver cancer patients. The novel and innovative assay for CTCs shown in this paper will facilitate future work examining the relationship between CTC numbers and patient outcomes, forming the foundation for incorporation of liquid biopsy into routine clinical care for these patients. Graphical abstract Overview of novel liquid biopsy test for circulating tumor cells for pediatric liver cancer. Figure made with Biorender.
Collapse
|
7
|
Gibbs SL, Delikatny EJ. Editorial to the Special Issue Entitled "Optical Surgical Navigation". Mol Imaging Biol 2023; 25:1-2. [PMID: 36729349 DOI: 10.1007/s11307-023-01806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Summer L Gibbs
- Biomedical Engineering Department, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201, USA.
| | - Edward J Delikatny
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Azari F, Meijer RPJ, Kennedy GT, Hanna A, Chang A, Nadeem B, Din A, Pèlegrin A, Framery B, Cailler F, Sullivan NT, Kucharczuk J, Martin LW, Vahrmeijer AL, Singhal S. Carcinoembryonic Antigen-Related Cell Adhesion Molecule Type 5 Receptor-Targeted Fluorescent Intraoperative Molecular Imaging Tracer for Lung Cancer: A Nonrandomized Controlled Trial. JAMA Netw Open 2023; 6:e2252885. [PMID: 36705924 PMCID: PMC10292762 DOI: 10.1001/jamanetworkopen.2022.52885] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Importance Localization of subcentimeter ground glass opacities during minimally invasive thoracoscopic lung cancer resections is a significant challenge in thoracic oncology. Intraoperative molecular imaging has emerged as a potential solution, but the availability of suitable fluorescence agents is a limiting factor. Objective To evaluate the suitability of SGM-101, a carcinoembryonic antigen-related cell adhesion molecule type 5 (CEACAM5) receptor-targeted near-infrared fluorochrome, for molecular imaging-guided lung cancer resections, because glycoprotein is expressed in more than 80% of adenocarcinomas. Design, Setting, and Participants For this nonrandomized, proof-of-principal, phase 1 controlled trial, patients were divided into 2 groups between August 1, 2020, and January 31, 2022. Patients with known CEACAM5-positive gastrointestinal tumors suggestive of lung metastasis were selected as proof-of-principle positive controls. The investigative group included patients with lung nodules suggestive of primary lung malignant neoplasms. Patients 18 years or older without significant comorbidities that precluded surgical exploration with suspicious pulmonary nodules requiring surgical biopsy were included in the study. Interventions SGM-101 (10 mg) was infused up to 5 days before index operation, and pulmonary nodules were imaged using a near-infrared camera system with a dedicated thoracoscope. Main Outcomes and Measures SGM-101 localization to pulmonary nodules and its correlation with CEACAM5 glycoprotein expression by the tumor as quantified by tumor and normal pulmonary parenchymal fluorescence. Results Ten patients (5 per group; 5 male and 5 female; median [IQR] age, 66 [58-69] years) with 14 total lesions (median [range] lesion size, 0.91 [0.90-2.00] cm) were enrolled in the study. In the control group of 4 patients (1 patient did not undergo surgical resection because of abnormal preoperative cardiac clearance findings that were not deemed related to SGM-101 infusion), the mean (SD) lesion size was 1.33 (0.48) cm, 2 patients had elevated serum CEA markers, and 2 patients had normal serum CEA levels. Of the 4 patients who underwent surgical intervention, those with 2+ and 3+ tissue CEACAM5 expression had excellent tumor fluorescence, with a mean (SD) tumor to background ratio of 3.11 (0.45). In the patient cohort, the mean (SD) lesion size was 0.68 (0.22) cm, and no elevations in serum CEA levels were found. Lack of SGM-101 fluorescence was associated with benign lesions and with lack of CEACAM5 staining. Conclusions and Relevance This in-human proof-of-principle nonrandomized controlled trial demonstrated SGM-101 localization to CEACAM5-positive tumors with the detection of real-time near-infrared fluorescence in situ, ex vivo, and by immunofluorescence microscopy. These findings suggest that SGM-101 is a safe, receptor-specific, and feasible intraoperative molecular imaging fluorochrome that should be further evaluated in randomized clinical trials. Trial Registration ClinicalTrials.gov identifier: NCT04315467.
Collapse
Affiliation(s)
- Feredun Azari
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - Ruben P J Meijer
- Centre for Human Drug Research, Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Gregory T Kennedy
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - Andrew Hanna
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Ashley Chang
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - Bilal Nadeem
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - Azra Din
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - André Pèlegrin
- SurgiMab, Montpellier, France
- Institute of Cancer Research of Montpellier, University of Montpellier, Montpellier, France
| | | | | | - Neil T Sullivan
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - John Kucharczuk
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - Linda W Martin
- Department of Thoracic Surgery, University of Virginia School of Medicine, Charlottesville
| | - Alexander L Vahrmeijer
- Centre for Human Drug Research, Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Sunil Singhal
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| |
Collapse
|
9
|
Azari F, Zhang K, Kennedy GT, Chang A, Nadeem B, Delikatny EJ, Singhal S. Precision Surgery Guided by Intraoperative Molecular Imaging. J Nucl Med 2022; 63:1620-1627. [PMID: 35953303 PMCID: PMC9635678 DOI: 10.2967/jnumed.121.263409] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Intraoperative molecular imaging (IMI) has recently emerged as an important tool in the armamentarium of surgical oncologists. IMI allows real-time assessment of oncologic resection quality, margin assessment, and occult disease detection during real-time surgery. Numerous tracers have now been developed for use in IMI-guided tissue sampling. Fluorochromes localize to the tumor by taking advantage of their disorganized capillary milieu, overexpressed receptors, or upregulated enzymes. Although fluorescent tracers can suffer from issues of autofluorescence and lack of depth penetration, these challenges are being addressed through hybrid radioactive/fluorescent tracers and new tracers that fluoresce in the near-infrared (NIR-II [wavelength > 1,000 nm]) range. IMI is already being used to treat numerous cancers, with demonstrated improvement in cancer recurrence and patient outcomes without incurring significant burden on either clinicians or patients. In this comprehensive review, we discuss history, mechanism, current oncologic applications, and future directions of IMI-guided optical biopsy.
Collapse
Affiliation(s)
- Feredun Azari
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kevin Zhang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Gregory T. Kennedy
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ashley Chang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Bilal Nadeem
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Edward J. Delikatny
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania;
| |
Collapse
|
10
|
Cui F, Liu J, Du M, Fan J, Fu J, Geng Q, He M, Hu J, Li B, Li S, Li X, Liao YD, Lin L, Liu F, Liu J, Lv J, Pu Q, Tan L, Tian H, Wang M, Wang T, Wei L, Xu C, Xu S, Xu S, Yang H, Yu BT, Yu G, Yu Z, Lee CY, Pompeo E, Azari F, Igai H, Kim HK, Andolfi M, Hamaji M, Bassi M, Karenovics W, Yutaka Y, Shimada Y, Sakao Y, Sihoe ADL, Zhang Y, Zhang Z, Zhao J, Zhong W, Zhu Y, He J. Expert consensus on indocyanine green fluorescence imaging for thoracoscopic lung resection (The Version 2022). Transl Lung Cancer Res 2022; 11:2318-2331. [PMID: 36519017 PMCID: PMC9742622 DOI: 10.21037/tlcr-22-810] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 08/27/2023]
Abstract
The use of the white-light thoracoscopy is hampered by the low contrast between oncologic margins and surrounding normal parenchyma. As a result, many patients with in situ or micro-infiltrating adenocarcinoma have to undergo lobectomy due to a lack of tactile and visual feedback in the resection of solitary pulmonary nodules. Near-infrared (NIR) guided indocyanine green (ICG) fluorescence imaging technique has been widely investigated due to its unique capability in addressing the current challenges; however, there is no special consensus on the evidence and recommendations for its preoperative and intraoperative applications. This manuscript will describe the development process of a consensus on ICG fluorescence-guided thoracoscopic resection of pulmonary lesions and make recommendations that can be applied in a greater number of centers. Specifically, an expert panel of thoracic surgeons and radiographers was formed. Based on the quality of evidence and strength of recommendations, the consensus was developed in conjunction with the Chinese Guidelines on Video-assisted Thoracoscopy, and the National Comprehensive Cancer Network (NCCN) guidelines on the management of pulmonary lesions. Each of the statements was discussed and agreed upon with a unanimous consensus amongst the panel. A total of 6 consensus statements were developed. Fluorescence-guided thoracoscopy has unique advantages in the visualization of pulmonary nodules, and recognition and resection of the anterior plane of the pulmonary segment. The expert panel agrees that fluorescence-guided thoracoscopic surgery has the potential to become a routine operation for the treatment of pulmonary lesions.
Collapse
Affiliation(s)
- Fei Cui
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Jun Liu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Ming Du
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junqiang Fan
- Department of Thoracic Surgery, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Junke Fu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming He
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Bin Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xukai Li
- Department of Thoracic Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yong-De Liao
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Lin
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Liu
- Department of Thoracic Surgery, Nanjing Chest Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jian Liu
- Anqing Hospital Affiliated to Anhui Medical University (Anqing Municipal Hospital), Anqing, China
| | - Junhong Lv
- Department of Thoracic Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Li Wei
- Department of Thoracic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Chuan Xu
- Department of Thoracic Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Shidong Xu
- Department of Thoracic Surgery and Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Haoxian Yang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guangmao Yu
- Department of Cardiothoracic Surgery, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University, Shaoxing, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Chang Young Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Eugenio Pompeo
- Department of Thoracic Surgery, Policlinico Tor Vergata University, Rome, Italy
| | - Feredun Azari
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hitoshi Igai
- Department of General Thoracic Surgery, Japanese Red Cross Maebashi Hospital, Maebashi, Gunma, Japan
| | - Hyun Koo Kim
- Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Marco Andolfi
- Department of Thoracic Surgery, AOU Ospedali Riuniti of Ancona, Ancona, Italy
| | - Masatsugu Hamaji
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto University, Kyoto, Japan
| | | | - Wolfram Karenovics
- Division of Thoracic and Endocrine Surgery, Department of Surgery, University Hospital Geneva, Geneva, Switzerland
| | - Yojiro Yutaka
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto University, Kyoto, Japan
| | - Yoshihisa Shimada
- Department of Thoracic Surgery, Tokyo Medical University Hospital, Tokyo, Japan
| | - Yukinori Sakao
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | | | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| |
Collapse
|