1
|
Bai W, Wang T, Yang X, Wang Z, Li H, Geng J. Two new sesquiterpenoids from the fruits of Alpinia oxyphylla. Nat Prod Res 2025; 39:468-474. [PMID: 37865974 DOI: 10.1080/14786419.2023.2272282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/31/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Two undescribed sesquiterpenoids, including one nor-eudesmane type (1) and one guaiane type (2), together with two known analogues (3-4) have been isolated and identified from the fruits of Alpinia oxyphylla. The structures of these new compounds were elucidated by extensive spectroscopic analyses (1D-, 2D-NMR, HRESIMS, IR, UV) and NMR calculations with DP4+ analysis. The anti-inflammatory activities of all isolates were evaluated by measuring their inhibitory effects on PGE2 production in LPS stimulated RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Weirong Bai
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, Jiangsu, China
| | - Tuanjie Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, Jiangsu, China
| | - Xiaoming Yang
- Preventive Medicine Department, Lianyungang Hospital of T CM Affiliated to Nanjing University of Chinese Medicine, Lianyungang, China
| | - Zhenzhong Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, Jiangsu, China
| | - Haibo Li
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, Jiangsu, China
| | - Jianliang Geng
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, Jiangsu, China
| |
Collapse
|
2
|
Zhang S, Yang Y, Zhang R, Gao J, Wu M, Wang J, Sheng J, Sun P. The Potential Mechanism of Alpiniae oxyphyllae Fructus Against Hyperuricemia: An Integration of Network Pharmacology, Molecular Docking, Molecular Dynamics Simulation, and In Vitro Experiments. Nutrients 2024; 17:71. [PMID: 39796505 PMCID: PMC11723258 DOI: 10.3390/nu17010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Alpiniae oxyphyllae Fructus (AOF) is a medicinal and edible resource that holds potential to ameliorate hyperuricemia (HUA), yet its mechanism of action warrants further investigation. Methods: We performed network pharmacology, molecular docking, molecular dynamics simulation, and in vitro experiments to investigate the potential action and mechanism of AOF against HUA. Results: The results indicate that 48 potential anti-HUA targets for 4 components derived from AOF were excavated and predicted through public databases. Gene Ontology (GO) enrichment analysis indicated that there are 190 entries related to biological process, 24 entries related to cellular component, 42 entries related to molecular function, and 44 entries related to Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways. The results of molecular docking showed that the main active ingredients of AOF may have potential therapeutic effects on immune system disorders and inflammation caused by HUA by binding to targets including peroxisome-proliferator-activated receptor gamma (PPARG), estrogen receptor 1 (ESR1), prostaglandin G/H synthase 2 (PTGS2), and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR). Subsequently, we further determined the stability of the complex between the core active ingredient and the core target proteins by molecular dynamics simulation. The results of cell experiments demonstrated that stigmasterol as the core active ingredient derived from AOF significantly upregulated the expression levels of ESR1 and PPARG (p < 0.001) to exert an anti-HUA effect. Conclusions: In summary, we have systematically elucidated that the mechanism of main active ingredients derived from AOF mainly exert their pharmacological effects by acting on multiple targets in this study. Our studies will provide a scientific basis for the precise development and utilization of AOF.
Collapse
Affiliation(s)
- Shuanggou Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (S.Z.); (R.Z.); (J.W.); (J.S.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuanfei Yang
- College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (J.G.); (M.W.)
| | - Ruohan Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (S.Z.); (R.Z.); (J.W.); (J.S.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jian Gao
- College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (J.G.); (M.W.)
| | - Mengyun Wu
- College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (J.G.); (M.W.)
| | - Jing Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (S.Z.); (R.Z.); (J.W.); (J.S.)
- College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (J.G.); (M.W.)
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (S.Z.); (R.Z.); (J.W.); (J.S.)
| | - Peiyuan Sun
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (S.Z.); (R.Z.); (J.W.); (J.S.)
- College of Science, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (J.G.); (M.W.)
| |
Collapse
|
3
|
Dong J, Li H, Zhou M, Yao X, Geng J, Yu Y. Four new diarylheptanoids and two new terpenoids from the fruits of Alpinia oxyphylla and their anti-inflammatory activities. Chin J Nat Med 2024; 22:929-936. [PMID: 39428184 DOI: 10.1016/s1875-5364(24)60723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Indexed: 10/22/2024]
Abstract
Four previously unreported diarylheptanoids (1a/1b-2a/2b), one undescribed sesquiterpenoid (8), one new diterpenoid (12), and twelve known analogs were isolated from the fruits of Alpinia oxyphylla. The structural elucidation of these compounds was achieved through a comprehensive analysis of spectroscopic data, single-crystal X-ray diffraction, electronic circular dichroism (ECD), and modified Mosher's method. Enantiomeric mixtures (1a/1b, 2a/2b, 3a/3b, 4a/4b, and 5a/5b) were separated on a chiral column using acetonitrile-water mixtures as eluents. Among them, compounds 3a/3b and 4a/4b were isolated as optically pure enantiomers in the initial chiral separation. Furthermore, most of the isolates were evaluated for their inhibitory effects against the production of nitric oxide (NO) and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Interestingly, 2 and 4 showed significant inhibitory activities against NO production with IC50 values of 33.65 and 9.88 μmol·L-1 (hydrocortisone: IC50 34.26 μmol·L-1), respectively. Additionally, they also partially reduced the secretion of IL-6.
Collapse
Affiliation(s)
- Jie Dong
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China; and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Haibo Li
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Mi Zhou
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China; and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China; and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Jianliang Geng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China; and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Liao J, Zhao X. Recent Research Progress on the Chemical Constituents, Pharmacology, and Pharmacokinetics of Alpinae oxyphyllae Fructus. Molecules 2024; 29:3905. [PMID: 39202984 PMCID: PMC11357166 DOI: 10.3390/molecules29163905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Alpinae oxyphyllae fructus (AOF), the dried mature fruit of Alpinia oxyphylla Miquel of the Zingiberaceae family, shows many special pharmacological effects. In recent years, there has been an abundance of research results on AOF. In this paper, the new compounds isolated from AOF since 2018 are reviewed, including terpenes, flavonoids, diarylheptanoids, phenolic acid, sterols, alkanes, fats, etc. The isolation methods that were applied include the microwave-assisted method, response surface method, chiral high-performance liquid chromatography-multiple reaction monitoring-mass spectrometry (HPLC-MRM-MS) analytical method, ultra-high-performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry (UPLC-Orbitrap-HRMS) method, ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method, hot water leaching method, ethanol leaching method, and so on. Additionally, the pharmacological effects of AOF found from 2018 to 2024 are also summarized, including neuroprotection, regulation of metabolic disorders, antioxidant activity, antiapoptosis, antiinflammatory activity, antidiabetic activity, antihyperuricemia, antiaging, antidiuresis, immune regulation, anti-tumor activity, renal protection, hepatoprotection, and anti-asthma. This paper provides a reference for further research on AOF.
Collapse
Affiliation(s)
| | - Xueying Zhao
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China;
| |
Collapse
|
5
|
Tie Y, Sun Z, Tong X, Cheng M, Wu Y, Shi Z, Xu P, Xue M, Xu L, Zhou X. Multi-omic analysis revealed the therapeutic mechanisms of Alpinia oxyphylla fructus water extract against bladder overactivity in spontaneously hypertensive rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155154. [PMID: 37976696 DOI: 10.1016/j.phymed.2023.155154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Alpinia oxyphylla fructus without impurities and shells is called "Yi-Zhi-Ren" (YZR) in Chinese, and traditionally used to alleviate enuresis. The aim of this study was to investigate the effects and underlying mechanisms of YZR in the treatment of overactive bladder (OAB) in spontaneously hypertensive rats (SHR), a vascular disorder-related OAB model. METHODS A 3-week administration of YZR water extract (p.o.) was done, followed by urodynamics to measure bladder parameters. Changes in bladder structure were observed through H&E staining and Masson's staining. An integrated approach involving network pharmacology, transcriptomics and metabolomics was employed to elucidate the potential mechanisms of YZR, and the key proteins involved in the mechanisms were validated by Western blotting. Additionally, network pharmacology was used to predict the relationship between YZR's active components and validated proteins. RESULTS YZR treatment significantly improved the bladder storage parameters, tightened the detrusor layer, reduced inflammatory infiltration, and decreased collagen proportion in the SHR bladder. These results indicated that YZR water extract can alleviate OAB symptoms and improve bladder structure. Integrated analysis suggested that YZR may affect extracellular matrix-receptor interaction and calcium signaling pathway. Western blotting results further confirmed that the reduction in key proteins, such as TGFβ1, p-SMAD3, collagen III, Gq and PLCβ1, involved in collagen synthesis and calcium signaling pathways after YZR treatment. Network pharmacology predicted that sitosterol, chrysin, and nootkatone were potential components responsible for YZR's therapeutic effect on OAB. CONCLUSION YZR's mechanisms of action in treating OAB involved the TGFβ1-SMAD3 signaling pathway-related collagen synthesis and Gq-PLCβ1 calcium signaling pathway, which are associated with detrusor contraction frequency and strength, respectively.
Collapse
Affiliation(s)
- Yan Tie
- Department of Clinical Prescription Pharmacy of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Zhihui Sun
- Department of Clinical Prescription Pharmacy of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xinyi Tong
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Mingchang Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yushan Wu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhilong Shi
- Department of Clinical Prescription Pharmacy of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Pingxiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ming Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Liping Xu
- Department of Clinical Prescription Pharmacy of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
6
|
Zhu YT, Fang HB, Liu XN, Yan YM, Feng WS, Cheng YX, Wang YZ. Unusual acetylated flavonol glucuronides, oxyphyllvonides A-H with renoprotective activities from the fruits of Alpinae oxyphylla. PHYTOCHEMISTRY 2023; 215:113849. [PMID: 37673290 DOI: 10.1016/j.phytochem.2023.113849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
As a widely consumed spice and Traditional Chinese Medicine, Alpinae oxyphylla has been used to treat conditions such as diarrhea, ulcers, dementia, and enuresis. Fruits of A. oxyphylla were phytochemically studied and the bioactive constituents against renal fibrosis were identified. Eight previously undescribed acetylated flavonol glucuronides named oxyphyllvonides A-H (1-7 and 10), two known acetylated flavonol glucuronides (8 and 9), together with seven known flavone glycosides (11-17) were isolated from the fruits of A. oxyphylla. Among them, flavonol glucuronides were discovered in Zingiberaceae for the first time. The planar structures of 1-7 and 10 were determined using HRESIMS and extensive spectroscopic techniques (UV, IR, 1D-NMR, and 2D-NMR). The absolute configurations of the sugar moiety in these compounds were determined by using LC-MS analysis of acid-hydrolyzed derivatized monosaccharides. Biological evaluation showed that 7-10, 13, 14, 16 and 17 inhibit renal fibrosis in TGF-β1-induced kidney proximal tubular cells. In addition, 7, 8 and 14 were superior to nootkatone in inhibiting Fibronectin expression. The finding has significant relevance to our ongoing research on the anti-renal fibrosis activity of A. oxyphylla.
Collapse
Affiliation(s)
- Yue-Tong Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Hong-Bin Fang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiao-Ning Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yong-Ming Yan
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-construction by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Yan-Zhi Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-construction by Henan Province & Education Ministry of PR China, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Dong J, Zhou M, Pan DB, Qin QY, Li T, Yao XS, Li HB, Yu Y. Eremophilane and cadinane sesquiterpenoids from the fruits of Alpinia oxyphylla and their anti-inflammatory activities. Food Funct 2023; 14:9755-9766. [PMID: 37830383 DOI: 10.1039/d3fo01221b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The fruits of Alpinia oxyphylla have been used for centuries in China as both edible resources and traditional Chinese medicine. In order to identify structurally interesting and bioactive constituents from the fruits of A. oxyphylla, bioassay-guided fractionation and purification of the crude extracts were performed, which led to the isolation of 38 sesquiterpenoids, including six previously undescribed eremophilane sesquiterpenoids (1-6), six new cadinane sesquiterpenoids (23-24, 26-29), and 26 known analogues (7-22, 25 and 31-38). The structures of these compounds were elucidated by comprehensive spectroscopic data analysis, single crystal X-ray diffraction, quantum chemistry calculations (13C-NMR and ECD), and Mo2(OAc)4 reaction. Several of the isolated compounds (8, 13, 17, 18, 30, 31 and 35) showed moderate to strong inhibition of the secretion of cytokines (NO, TNF-α and IL-6) in LPS-stimulated BV-2 cells. Furthermore, western blot, immunofluorescence, and real-time PCR assays indicated that 18 could down-regulate the mRNA levels of TNF-α, IL-6, COX-2, and iNOS and the protein expression of COX-2 and iNOS. Meanwhile, 18 was able to partially inhibit the phosphorylation of ERK1/2, JNK, and p38. Thus, the discovery of structurally diverse anti-inflammatory sesquiterpenoids from the fruits of A. oxyphylla in this study could benefit the further development and utilization of this plant.
Collapse
Affiliation(s)
- Jie Dong
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Mi Zhou
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), Shenzhen 518057, China
| | - Da-Bo Pan
- Department of Medical Technology, Qiandongnan Vocational and Technical College for Nationalities, Kaili 556000, China
| | - Qian-Yu Qin
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Ting Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Hai-Bo Li
- Kanion Pharmaceutical Co. Ltd., National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang 222001, China.
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Dong J, Zhou M, Qin Q, Li T, Yao X, Geng J, Yu Y. Structurally diverse new eudesmane sesquiterpenoids with anti-inflammatory activity from the fruits of Alpinia oxyphylla. Bioorg Chem 2023; 134:106431. [PMID: 36857933 DOI: 10.1016/j.bioorg.2023.106431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/22/2023]
Abstract
The phytochemical investigation of the fruits of Alpinia oxyphylla led to the isolation and identification of 40 structurally diverse sesquiterpenoids, including 17 new eudesmane sesquiterpenoids (1-17) and 23 known analogues (18-40). Among the isolates, 14 and 17 were unusual rearranged eudesmane sesquiterpenoids, featuring rare 5/6-fused and 6/8-fused bicyclic carbon skeleton, respectively; 15 and 16 were the novel 6,7-seco-eudesmane sesquiterpenoids isolated from plant-origin for the first time, 1 and 3-6 were rare nor-eudesmane sesquiterpenoids. Their structures were elucidated by comprehensive spectroscopic data analysis (NMR, HRESIMS, IR, UV), single crystal X-ray diffraction, and quantum chemistry calculations (ECD and 13C NMR). Moreover, all isolates were evaluated by measuring their inhibitory effect on nitric oxide (NO) in LPS-stimulated BV-2 cells. As a result, compounds 11, 20, 24 and 40 showed moderate to strong inhibition on NO productions, with IC50 values ranging from 21.63 to 60.70 μM. Meanwhile, these compounds also partially decreased the secretion of TNF-α and IL-6 in LPS-stimulated BV-2 cells. Furthermore, 20 could down-regulate protein expressions (COX-2 and iNOS) and observably inhibit the mRNA expressions of TNF-α, IL-6, COX-2 and iNOS. In this study, the discovery of structurally diverse anti-inflammatory sesquiterpenoids from the fruits of A. oxyphylla could benefit the further development and utilization of this plant.
Collapse
Affiliation(s)
- Jie Dong
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Mi Zhou
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Qianyu Qin
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Ting Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Jianliang Geng
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Zhang MH, Han XX, Lu Y, Deng JJ, Zhang WH, Mao JQ, Mi J, Ding WH, Wu MJ, Yu LM, Liu YH. Chronic intermittent hypoxia impaired collagen synthesis in mouse genioglossus via ROS accumulation: A transcriptomic analysis. Respir Physiol Neurobiol 2023; 308:103980. [PMID: 36273780 DOI: 10.1016/j.resp.2022.103980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Obstructive sleep apnea (OSA) is a sleep-related breathing disorder characterized by intermittent and recurrent upper airway collapse during sleep that leads to chronic intermittent hypoxia (CIH). The genioglossus (GG) is the largest dilator muscle, which controls the upper airway and plays an important role in OSA pathology. Elucidating its genetic alterations may help identify potential targets for OSA. However, the genetic aspects of the GG in CIH mice remain unclear. Here, we have conducted an RNA sequencing (RNA-Seq) analysis to assess the differentially expressed genes (DEGs) in the GG between CIH mice and normoxia (NOR) mice. A total of 637 DEGs were identified to be dysregulated in CIH mice compared with control mice. Bioinformatics analysis showed that the DEGs were related to various physiological processes, such as the endogenous stimulus responses, cellular component organization and metabolic processes. Extracellular matrix (ECM)-receptor interaction was the top KEGG pathway in the environmental information processing category with high significance and large fold changes. From the gene weight distributions of collagen (Col)-related biological processes (BPs), we found several significant DEGs, such as Col1a1, Col1a2, Mmp2, Col3a1, Col5a1, Fmod, and Col5a2. A PPI network showed that Col1a1 was linked to ECM-receptor interactions, responses to reactive oxygen species (ROS) and Col-related BPs. It was verified in vivo and in vitro that hypoxia can induce excess ROS and reduce Col expression levels. Moreover, we found NAC can effectively scavenge ROS and restore collagen synthesis. These findings contribute to a better understanding of the mechanisms linking OSA and upper airway muscle injury and may help identify potential therapeutic targets.
Collapse
Affiliation(s)
- Meng-Han Zhang
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China; Department of Orthodontics, School of Stomatology affiliated to Medical College, Zhejiang University, Hangzhou 310005, China
| | - Xin-Xin Han
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Yun Lu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Jia-Jia Deng
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Wei-Hua Zhang
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Jia-Qi Mao
- Department of Endodontics, Stomatological Hospital, Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Mi
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Wang-Hui Ding
- Department of Orthodontics, School of Stomatology affiliated to Medical College, Zhejiang University, Hangzhou 310005, China
| | - Meng-Jie Wu
- Department of Orthodontics, School of Stomatology affiliated to Medical College, Zhejiang University, Hangzhou 310005, China
| | - Li-Ming Yu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China.
| | - Yue-Hua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China.
| |
Collapse
|
10
|
Xiao M, Chen B, Niu K, Long Z, Yang F, Xie Y. Alpiniae oxyphylla fructus extract promotes longevity and stress resistance of C. elegans via DAF-16 and SKN-1. Front Pharmacol 2022; 13:1034515. [PMID: 36506568 PMCID: PMC9730235 DOI: 10.3389/fphar.2022.1034515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Alpiniae Oxyphylla Fructus (AOF) is Traditional Chinese medicine and a dietary supplements for centuries, which posseses cardiotonic, neuroprotective, antioxidant, warming the kidney and nourish the spleen, these biological fuction is related to potential anti-aging properties. However, little is known about their effects on aging. This work aimed to investigate the effects of extracts of AOF on longevity and stress resistance in Caenorhabditis elegans (C. elegans) and the mechanisms that underlie its effects. Methods: Wild-type (WT) strand of C.elegans (N2)worms were cultured in growth medium with or without AOF. First, we examined the effects of AOF on lifespan, reproduction and healthspan assay, stress resistance and oxidative analysis, lipofuscin levels. Second, The levels of ROS and MDA, the antioxidant enzyme activities were examined to explore the underlying mechanism of AOF. Finally, the expression of the longevity-related genes were investigated to further understand the AOF's underlying mechanism. Results: The lifespan of C. elegans was prolonged by 23.44% after treatment with high-dose AOF (100 ug/ml). AOF alleviated aging-related declines in C. elegans health and enhanced resistance to heat shock. Furthermore, AOF decreased reactive oxygen species and malondialdehyde, increased the activities of superoxide dismutase and catalase, and reduced accumulation of fat. AOF upregulated the expression of sod-3, gst-4, daf-16, and skn-1 but downregulated the expression of daf-2 and age-1 and accelerated the translocation of DAF-16 into the nucleus. The extended lifespan induced by AOF was reversed in daf-16(mu86) and skn-1(zu135) mutants, indicating that this gene is involved in AOF-regulated longevity. Conclusion: Our findings demonstrated that AOF extends lifespan and healthspan and enhances stress via boosting the activity of the antioxidant enzyme and controlling the expression of genes associated with insulin/IGF signaling and SKN-1 pathways. As a result, this work suggested AOF as a possible candidate to reduce the signs of aging by activating and inhibiting target genes.
Collapse
Affiliation(s)
- Man Xiao
- Key Laboratory of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, Hainan, China
| | - Bocen Chen
- Key Laboratory of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, Hainan, China
| | - Kun Niu
- College of Chinese Traditional Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Ziyu Long
- Key Laboratory of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, Hainan, China
| | - Fan Yang
- College of Chinese Traditional Medicine, Hainan Medical University, Haikou, Hainan, China,*Correspondence: Fan Yang, ; Yiqiang Xie,
| | - Yiqiang Xie
- College of Chinese Traditional Medicine, Hainan Medical University, Haikou, Hainan, China,*Correspondence: Fan Yang, ; Yiqiang Xie,
| |
Collapse
|
11
|
Zhong S, Shen J, Wang M, Mao Y, Du X, Ma J. Altered resting-state functional connectivity of insula in children with primary nocturnal enuresis. Front Neurosci 2022; 16:913489. [PMID: 35928018 PMCID: PMC9343997 DOI: 10.3389/fnins.2022.913489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Primary nocturnal enuresis (PNE) is a common developmental condition in school-aged children. The objective is to better understand the pathophysiology of PNE by using insula-centered resting-state functional connectivity (rsFC). Methods We recruited 66 right-handed participants in our analysis, 33 with PNE and 33 healthy control (HC) children without enuresis matched for gender and age. Functional and structural MRI data were obtained from all the children. Seed-based rsFC was used to examine differences in insular functional connectivity between the PNE and HC groups. Correlation analyses were carried out to explore the relationship between abnormal insula-centered functional connectivity and clinical characteristics in the PNE group. Results Compared with HC children, the children with PNE demonstrated decreased left and right insular rsFC with the right medial superior frontal gyrus (SFG). In addition, the bilateral dorsal anterior insula (dAI) seeds also indicated the reduced rsFC with right medial SFG. Furthermore, the right posterior insula (PI) seed showed the weaker rsFC with the right medial SFG, while the left PI seed displayed the weaker rsFC with the right SFG. No statistically significant correlations were detected between aberrant insular rsFC and clinical variables (e.g., micturition desire awakening, bed-wetting frequency, and bladder volume) in results without global signal regression (GSR) in the PNE group. However, before and after setting age as a covariate, significant and positive correlations between bladder volume and the rsFC of the left dAI with right medial SFG and the rsFC of the right PI with right medial SFG were found in results with GSR in the PNE group. Conclusion To the best of our knowledge, this study explored the rsFC patterns of the insula in children with PNE for the first time. These results uncovered the abnormal rsFC of the insula with the medial prefrontal cortex without and with GSR in the PNE group, suggesting that dysconnectivity of the salience network (SN)-default mode network (DMN) may involve in the underlying pathophysiology of children with PNE. However, the inconsistent associations between bladder volume and dysconnectivity of the SN-DMN in results without and with GSR need further studies.
Collapse
Affiliation(s)
- Shaogen Zhong
- Department of Developmental and Behavioral Pediatrics, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayao Shen
- Department of Nephrology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengxing Wang
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yi Mao
- Department of Developmental and Behavioral Pediatrics, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxia Du
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Jun Ma
- Department of Developmental and Behavioral Pediatrics, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Butyric acid alleviated chronic intermittent hypoxia-induced lipid formation and inflammation through up-regulating HuR expression and inactivating AMPK pathways. Biosci Rep 2021; 41:228420. [PMID: 33876818 PMCID: PMC8220371 DOI: 10.1042/bsr20203639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/24/2022] Open
Abstract
To investigate whether butyric acid could alleviate chronic intermittent hypoxia (CIH)-induced lipid formation in human preadipocytes-subcutaneous (HPA-s) through accumulation of human antigen R (HuR) and inactivation of AMP-activated protein kinase (AMPK) pathway, HPA-s were obtained and divided into three groups: Control group: cells were cultured under normal conditions; CIH group: cells were cultured in a three-gas incubator (10% O2); Butyric acid group: 10 mmol/l butyric acid added into cell culture medium. HuR-siRNA was futher transfected into CIH group for verification the function of HuR. Oil Red O was implemented for observation of lipid droplets within cells. Cell Counting Kit-8 (CCK8) assay was used for detecting cell viability. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-nick end labeling (TUNEL) assay as well as flow cytometry analysis was employed for determining cell apoptosis. Western blotting was used for measurement of protein expression levels. RT-qPCR analysis was used for detecting mRNA expression. CIH treatment increased adipocytes proliferation, while butyric acid inhibited cell proliferation and promoted cell apoptosis. The treatment of butyric acid in CIH group down-regulated expression of inflammatory factors and increased cell apoptotic rate. Butyric acid treatment increased HuR expression in both cytoplasm and nucleus and decreased the level of p-AMPK and p-ACC, while transfection of AMPK activator or HuR-siRNA would down-regulate HuR expression. Moreover, butyric acid alleviated CIH-induced cell proliferation, lipid formation and inflammatory status and promoted cell apoptosis through regulating related genes including p21, PPARγ, C/EBPa, IL-1β, IL-6, TLR4, caspase-8 and caspase-3. In conclusion, butyric acid could alleviate CIH-induced inflammation, cell proliferation and lipid formation through accumulation of HuR and inactivation of AMPK pathway.
Collapse
|