1
|
Camy C, Grünewald T, Lamy E, Roseren F, Caumes M, Fovet T, Brioche T, Genovesio C, Chopard A, Pithioux M, Roffino S. Characterization of the mechanical properties of the mouse Achilles tendon enthesis by microindentation. Effects of unloading and subsequent reloading. Bone Rep 2024; 20:101734. [PMID: 38292933 PMCID: PMC10825371 DOI: 10.1016/j.bonr.2024.101734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
The fibrocartilaginous tendon enthesis, i.e. the site where a tendon is attached to bone through a fibrocartilaginous tissue, is considered as a functionally graded interface. However, at local scale, a very limited number of studies have characterized micromechanical properties of this transitional tissue. The first goal of this work was to characterize the micromechanical properties of the mineralized part of the healthy Achilles tendon enthesis (ATE) through microindentation testing and to assess the degree of mineralization and of carbonation of mineral crystals by Raman spectroscopy. Since little is known about enthesis biological plasticity, our second objective was to examine the effects of unloading and reloading, using a mouse hindlimb-unloading model, on both the micromechanical properties and the mineral phase of the ATE. Elastic modulus, hardness, degree of mineralization, and degree of carbonation were assessed after 14 days of hindlimb suspension and again after a subsequent 6 days of reloading. The elastic modulus gradually increased along the mineralized part of the ATE from the tidemark to the subchondral bone, with the same trend being found for hardness. Whereas the degree of carbonation did not differ according to zone of measurement, the degree of mineralization increased by >70 % from tidemark to subchondral bone. Thus, the gradient in micromechanical properties is in part explained by a mineralization gradient. A 14-day unloading period did not appear to affect the gradient of micromechanical properties of the ATE, nor the degree of mineralization or carbonation. However, contrary to a short period of unloading, early return to normal mechanical load reduced the micromechanical properties gradient, regardless of carbonate-to-phosphate ratios, likely due to the more homogeneous degree of mineralization. These findings provide valuable data not only for tissue bioengineering, but also for musculoskeletal clinical studies and microgravity studies focusing on long-term space travel by astronauts.
Collapse
Affiliation(s)
- Claire Camy
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
| | - Tilman Grünewald
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Edouard Lamy
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
| | - Flavy Roseren
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Mecabio Platform, Department of Orthopaedics and Traumatology, 13009 Marseille, France
| | | | - Théo Fovet
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Thomas Brioche
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | | | - Angèle Chopard
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Martine Pithioux
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Mecabio Platform, Department of Orthopaedics and Traumatology, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13009 Marseille, France
| | | |
Collapse
|
2
|
Kundu A, Bhadoria P. A Case Report on Myotendinous Junction. Cureus 2023; 15:e42233. [PMID: 37605688 PMCID: PMC10440011 DOI: 10.7759/cureus.42233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/23/2023] Open
Abstract
Myotendinous junction is the transition zone between the muscle and its tendon. Hence, it is subject to immense stress within the muscle. In this study, it is found that muscles having a greater tensile have a more arranged myotendinous junction compared to muscles with lesser tensile strength. Cadaveric specimens - plantaris, gastrocnemius, and soleus have been histologically studied to study the same.
Collapse
Affiliation(s)
- Aditya Kundu
- Anatomy, All India Institute of Medical Sciences, Rishikesh, IND
| | - Pooja Bhadoria
- Anatomy, All India Institute of Medical Sciences, Rishikesh, IND
| |
Collapse
|
3
|
Jacob CDS, Barbosa GK, Rodrigues MP, Pimentel Neto J, Rocha-Braga LC, de Oliveira CG, Chacur M, Ciena AP. Ultrastructural and Molecular Development of the Myotendinous Junction Triggered by Stretching Prior to Resistance Exercise. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-6. [PMID: 35258447 DOI: 10.1017/s1431927622000186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The myotendinous junction (MTJ) is a highly specialized region of the locomotor apparatus. Here, we investigated the ultrastructural and molecular effects in the MTJ region after static stretching prior to the ladder-based resistance training. Thirty-two male, 60-day old Wistar rats were divided into four groups: Sedentary, Resistance Training, Stretching, and Stretching-Resistance Training. The gastrocnemius muscle was processed for transmission electron microscopy techniques and Western blot assay. We observed that the static stretching prior to the ladder-based resistance training increased the MTJ components, the fibroblast growth factor (FGF)-2 and FGF-6 protein expression. Also, we demonstrated the lower transforming growth factor expression and no difference in the lysyl oxidase expression after combined training. The MTJ alterations in response to combined training demonstrate adaptive mechanisms which can be used for the prescription or development of methods to reduce or prevent injuries in humans and promote the myotendinous interface benefit.
Collapse
Affiliation(s)
- Carolina Dos S Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Gabriela K Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Mariana P Rodrigues
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Lara C Rocha-Braga
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| | - Camilla G de Oliveira
- Laboratory of Functional Neuroanatomy of Pain (LAND), Department of Anatomy, Universidade de Sao Paulo (USP), São Paulo, SP, Brazil
| | - Marucia Chacur
- Laboratory of Functional Neuroanatomy of Pain (LAND), Department of Anatomy, Universidade de Sao Paulo (USP), São Paulo, SP, Brazil
| | - Adriano P Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro13506-900, SP, Brazil
| |
Collapse
|
4
|
Rocha LC, Barbosa GK, Pimentel Neto J, Jacob CDS, Knudsen AB, Watanabe IS, Ciena AP. Aquatic Training after Joint Immobilization in Rats Promotes Adaptations in Myotendinous Junctions. Int J Mol Sci 2021; 22:ijms22136983. [PMID: 34209663 PMCID: PMC8267653 DOI: 10.3390/ijms22136983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
The myotendinous junction (MTJ) is the muscle-tendon interface and constitutes an integrated mechanical unit to force transmission. Joint immobilization promotes muscle atrophy via disuse, while physical exercise can be used as an adaptative stimulus. In this study, we aimed to investigate the components of the MTJ and their adaptations and the associated elements triggered with aquatic training after joint immobilization. Forty-four male Wistar rats were divided into sedentary (SD), aquatic training (AT), immobilization (IM), and immobilization/aquatic training (IMAT) groups. The samples were processed to measure fiber area, nuclear fractal dimension, MTJ nuclear density, identification of telocytes, sarcomeres, and MTJ perimeter length. In the AT group, the maintenance of ultrastructure and elements in the MTJ region were observed; the IM group presented muscle atrophy effects with reduced MTJ perimeter; the IMAT group demonstrated that aquatic training after joint immobilization promotes benefits in the muscle fiber area and fractal dimension, in the MTJ region shows longer sarcomeres and MTJ perimeter. We identified the presence of telocytes in the MTJ region in all experimental groups. We concluded that aquatic training is an effective rehabilitation method after joint immobilization due to reduced muscle atrophy and regeneration effects on MTJ in rats.
Collapse
Affiliation(s)
- Lara Caetano Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (L.C.R.); (G.K.B.); (J.P.N.); (C.d.S.J.)
| | - Gabriela Klein Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (L.C.R.); (G.K.B.); (J.P.N.); (C.d.S.J.)
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (L.C.R.); (G.K.B.); (J.P.N.); (C.d.S.J.)
| | - Carolina dos Santos Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (L.C.R.); (G.K.B.); (J.P.N.); (C.d.S.J.)
| | - Andreas B. Knudsen
- Department of Sports Traumatology M51, Bispebjerg and Frederiksberg Hospital, IOC Copenhagen Research Center, 1050 Copenhagen, Denmark;
| | - Ii-Sei Watanabe
- Department of Anatomy, Institute of Biomedical Science III, University of São Paulo-USP, São Paulo 05508-000, SP, Brazil;
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (L.C.R.); (G.K.B.); (J.P.N.); (C.d.S.J.)
- Correspondence: ; Tel.: +55-193-526-4346
| |
Collapse
|
5
|
Roffino S, Camy C, Foucault-Bertaud A, Lamy E, Pithioux M, Chopard A. Negative impact of disuse and unloading on tendon enthesis structure and function. LIFE SCIENCES IN SPACE RESEARCH 2021; 29:46-52. [PMID: 33888287 DOI: 10.1016/j.lssr.2021.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Exposure to chronic skeletal muscle disuse and unloading that astronauts experience results in muscle deconditioning and bone remodeling. Tendons involved in the transmission of force from muscles to skeleton are also affected. Understanding the changes that occur in muscle, tendon, and bone is an essential step toward limiting or preventing the deleterious effects of chronic reduction in mechanical load. Numerous reviews have reported the effects of this reduction on both muscle and bone, and to a lesser extent on the tendon. However, none focused on the tendon enthesis, the tendon-to-bone attachment site. While the enthesis structure appears to be determined by mechanical stress, little is known about enthesis plasticity. Our review first looks at the relationship between entheses and mechanical stress, exploring how tensile and compressive loads determine and influence enthesis structure and composition. The second part of this review addresses the deleterious effects of skeletal muscle disuse and unloading on enthesis structure, composition, and function. We discuss the possibility that spaceflight-induced enthesis remodeling could impact both the capacity of the enthesis to withstand compressive stress and its potential weakness. Finally, we point out how altered compressive strength at entheses could expose astronauts to the risk of developing enthesopathies.
Collapse
Affiliation(s)
- S Roffino
- ISM Inst Movement Sci, Aix-Marseille University, CNRS, Marseille, France.
| | - C Camy
- ISM Inst Movement Sci, Aix-Marseille University, CNRS, Marseille, France
| | - A Foucault-Bertaud
- INSERM 1263, INRA 1260, C2VN, Aix-Marseille University, Marseille, France
| | - E Lamy
- ISM Inst Movement Sci, Aix-Marseille University, CNRS, Marseille, France
| | - M Pithioux
- ISM Inst Movement Sci, Aix-Marseille University, CNRS, Marseille, France
| | - A Chopard
- DMEM, Montpellier University, INRAE, Montpellier, France
| |
Collapse
|
6
|
Snedeker JG, Foolen J. Tendon injury and repair - A perspective on the basic mechanisms of tendon disease and future clinical therapy. Acta Biomater 2017; 63:18-36. [PMID: 28867648 DOI: 10.1016/j.actbio.2017.08.032] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/16/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022]
Abstract
Tendon is an intricately organized connective tissue that efficiently transfers muscle force to the bony skeleton. Its structure, function, and physiology reflect the extreme, repetitive mechanical stresses that tendon tissues bear. These mechanical demands also lie beneath high clinical rates of tendon disorders, and present daunting challenges for clinical treatment of these ailments. This article aims to provide perspective on the most urgent frontiers of tendon research and therapeutic development. We start by broadly introducing essential elements of current understanding about tendon structure, function, physiology, damage, and repair. We then introduce and describe a novel paradigm explaining tendon disease progression from initial accumulation of damage in the tendon core to eventual vascular recruitment from the surrounding synovial tissues. We conclude with a perspective on the important role that biomaterials will play in translating research discoveries to the patient. STATEMENT OF SIGNIFICANCE Tendon and ligament problems represent the most frequent musculoskeletal complaints for which patients seek medical attention. Current therapeutic options for addressing tendon disorders are often ineffective, and the need for improved understanding of tendon physiology is urgent. This perspective article summarizes essential elements of our current knowledge on tendon structure, function, physiology, damage, and repair. It also describes a novel framework to understand tendon physiology and pathophysiology that may be useful in pushing the field forward.
Collapse
|