1
|
Wasser-Bennett G, Brown AR, Maynard SK, Owen SF, Tyler CR. Critical insights into the potential risks of antipsychotic drugs to fish, including through effects on behaviour. Biol Rev Camb Philos Soc 2025. [PMID: 40355132 DOI: 10.1111/brv.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 04/15/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Antipsychotic drugs (APDs) are a diverse class of neuroactive pharmaceuticals increasingly detected in surface and ground waters globally. Some APDs are classified as posing a high environmental risk, due, in part, to their tendency to bioaccumulate in wildlife, including fish. Additional risk drivers for APDs relate to their behavioural effects, potentially impacting fitness outcomes. However, standard ecotoxicological tests used in environmental risk assessment (ERA) do not currently account for these mechanisms. In this review, we critically appraise the environmental risks of APDs to fish. We begin by reading-across from human and mammalian effects data to standard ecotoxicological effects endpoints in fish. We then explore the wide range of behaviours suitable for ecotoxicological assessment of APDs (and other neuroactive) pharmaceuticals, principally through laboratory studies with zebrafish, and assess the potential for using these behavioural phenotypes to predict adverse individual- and population-level outcomes in wild fish, taking into account phenotypic plasticity. Next, we illustrate the advantages and challenges of measuring and applying behavioural endpoints for fish, including within current regulatory risk assessments. In our final analysis, the implications of relying on apical endpoints for ERA of neuroactive drugs (including APDs) are assessed and recommendations provided for the development of a more refined and tailored mechanistic approach, which would enable more robust assessment of their environmental risk(s).
Collapse
Affiliation(s)
- Gabrielle Wasser-Bennett
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, Devon, UK
| | - A Ross Brown
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, Devon, UK
| | - Samuel K Maynard
- AstraZeneca, Global Environment, Macclesfield, Cheshire, SK10 2NA, UK
| | - Stewart F Owen
- AstraZeneca, Global Environment, Macclesfield, Cheshire, SK10 2NA, UK
| | - Charles R Tyler
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, Devon, UK
| |
Collapse
|
2
|
Abdel-Motleb A, Abd El-Hamid RM, Sayed SSM. Biological Diversity Associated with Pesticides Residues in Certain Egyptian Watercourses. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 88:419-436. [PMID: 40346423 DOI: 10.1007/s00244-025-01129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 03/26/2025] [Indexed: 05/11/2025]
Abstract
The aquatic environment has been contaminated by pyrethroids and triazole pesticide applications, which pose serious health risks to the aquatic ecosystem and human beings. Therefore, the current study aims to evaluate water quality parameters, fungal diversity, and distribution of snails and aquatic plants of certain Egyptian water courses contaminated with pyrethroids and triazole pesticides. Seasonal samples were taken throughout 2021 from different water courses at Giza Governorate and Tanta (Gharbeya Governorate). Qualitative and quantitative surveys showed significant differences in water physical parameters between the two investigated governorates. Deltamethrin, permethrin, Es-fenvalerate, and lambada-cyhalothrin showed the highest pyrethroids concentrations, while tebuconazole, tetraconazole, and difenoconazole were the highest triazole concentrations. Fungal diversity displayed 21 molecularly identified fungal species related to four fungal genera: Aspergillus, Fusarium, Penicillium, and Trichoderma. Penicillium sp. and Aspergillus niger were the most frequent species. Snail diversity recorded 10 and 9 species in Giza and Tanta, respectively. Physa acuta was the most abundant snail. Ten species of aquatic plants were observed in Giza, while six species were observed in Tanta. Specifically, Eichhornia crassipes and Lemna gibba were the dominant species in the two governorates, with the relative abundance (39 and 22%) in Giza and (27 and 23%) in Tanta, respectively. Water quality parameters and seasonal variations could control fungal diversity, snails, and aquatic plant distribution. Different relations between pesticides and biological communities may reflect the ability/inability of certain snails and fungi species to commensalism with pesticide concentrations. Continuous pesticide monitoring is essential for life below water and aligns with SDG14.
Collapse
Affiliation(s)
- Asmaa Abdel-Motleb
- Environmental Research Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Rania M Abd El-Hamid
- Central Agricultural Pesticides Labratory, Agricultural Research Centre, Giza, Egypt
| | - Sara S M Sayed
- Environmental Research Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
3
|
Bertram MG, Ågerstrand M, Thoré ES, Allen J, Balshine S, Brand JA, Brooks BW, Dang Z, Duquesne S, Ford AT, Hoffmann F, Hollert H, Jacob S, Kloas W, Klüver N, Lazorchak J, Ledesma M, Maack G, Macartney EL, Martin JM, Melvin SD, Michelangeli M, Mohr S, Padilla S, Pyle G, Saaristo M, Sahm R, Smit E, Steevens JA, van den Berg S, Vossen LE, Wlodkowic D, Wong BB, Ziegler M, Brodin T. EthoCRED: a framework to guide reporting and evaluation of the relevance and reliability of behavioural ecotoxicity studies. Biol Rev Camb Philos Soc 2025; 100:556-585. [PMID: 39394884 PMCID: PMC11885694 DOI: 10.1111/brv.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Behavioural analysis has been attracting significant attention as a broad indicator of sub-lethal toxicity and has secured a place as an important subdiscipline in ecotoxicology. Among the most notable characteristics of behavioural research, compared to other established approaches in sub-lethal ecotoxicology (e.g. reproductive and developmental bioassays), are the wide range of study designs being used and the diversity of endpoints considered. At the same time, environmental hazard and risk assessment, which underpins regulatory decisions to protect the environment from potentially harmful chemicals, often recommends that ecotoxicological data be produced following accepted and validated test guidelines. These guidelines typically do not address behavioural changes, meaning that these, often sensitive, effects are not represented in hazard and risk assessments. Here, we propose a new tool, the EthoCRED evaluation method, for assessing the relevance and reliability of behavioural ecotoxicity data, which considers the unique requirements and challenges encountered in this field. This method and accompanying reporting recommendations are designed to serve as an extension of the "Criteria for Reporting and Evaluating Ecotoxicity Data (CRED)" project. As such, EthoCRED can both accommodate the wide array of experimental design approaches seen in behavioural ecotoxicology, and could be readily implemented into regulatory frameworks as deemed appropriate by policy makers of different jurisdictions to allow better integration of knowledge gained from behavioural testing into environmental protection. Furthermore, through our reporting recommendations, we aim to improve the reporting of behavioural studies in the peer-reviewed literature, and thereby increase their usefulness to inform chemical regulation.
Collapse
Affiliation(s)
- Michael G. Bertram
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
- Department of ZoologyStockholm UniversitySvante Arrhenius väg 18bStockholm114 18Sweden
- School of Biological SciencesMonash University25 Rainforest WalkMelbourne3800Australia
| | - Marlene Ågerstrand
- Department of Environmental ScienceStockholm UniversitySvante Arrhenius väg 8cStockholm114 18Sweden
| | - Eli S.J. Thoré
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
- Laboratory of Adaptive Biodynamics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth, and EnvironmentUniversity of NamurRue de Bruxelles 61Namur5000Belgium
- TRANSfarm, Science, Engineering, and Technology GroupKU LeuvenBijzondereweg 12Bierbeek3360Belgium
| | - Joel Allen
- Center for Environmental Measurement and Modeling, Office of Research and DevelopmentU.S. EPA26 Martin Luther King Drive WestCincinnati45268OhioUSA
| | - Sigal Balshine
- Department of Psychology, Neuroscience, & BehaviourMcMaster University1280 Main Street WestHamiltonL8S 4K1OntarioCanada
| | - Jack A. Brand
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
- Institute of ZoologyZoological Society of LondonOuter Circle, Regent's ParkLondonNW1, 4RYUK
| | - Bryan W. Brooks
- Department of Environmental ScienceBaylor UniversityOne Bear Place #97266Waco76798‐7266TexasUSA
| | - ZhiChao Dang
- National Institute for Public Health and the Environment (RIVM)Antonie van Leeuwenhoeklaan 9Bilthoven3721 MAthe Netherlands
| | - Sabine Duquesne
- German Environment Agency (UBA)Wörlitzer Platz 1Dessau‐Roßlau06844Germany
| | - Alex T. Ford
- Institute of Marine Sciences, School of Biological SciencesUniversity of PortsmouthFerry RoadPortsmouthPO4 9LYUK
| | - Frauke Hoffmann
- Department of Chemical and Product SafetyThe German Federal Institute for Risk Assessment (BfR)Max‐Dohrn‐Straße 8–10Berlin10589Germany
| | - Henner Hollert
- Goethe University FrankfurtMax‐von‐Laue‐Straße 13Frankfurt am Main60438Germany
| | - Stefanie Jacob
- German Environment Agency (UBA)Wörlitzer Platz 1Dessau‐Roßlau06844Germany
| | - Werner Kloas
- Leibniz‐Institute of Freshwater Ecology and Inland FisheriesMüggelseedamm 310Berlin12587Germany
| | - Nils Klüver
- Helmholtz Centre for Environmental Research (UFZ)Permoserstraße 15Leipzig04318Germany
| | - Jim Lazorchak
- Center for Environmental Measurement and Modeling, Office of Research and DevelopmentU.S. EPA26 Martin Luther King Drive WestCincinnati45268OhioUSA
| | - Mariana Ledesma
- Swedish Chemicals Agency (KemI)Löfströms allé 5Stockholm172 66Sweden
| | - Gerd Maack
- German Environment Agency (UBA)Wörlitzer Platz 1Dessau‐Roßlau06844Germany
| | - Erin L. Macartney
- Department of ZoologyStockholm UniversitySvante Arrhenius väg 18bStockholm114 18Sweden
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South Wales, Biological Sciences North (D26)Sydney2052Australia
- Charles Perkins Centre, School of Life and Environmental SciencesThe University of SydneyJohn Hopkins DriveSydney2006Australia
| | - Jake M. Martin
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
- Department of ZoologyStockholm UniversitySvante Arrhenius väg 18bStockholm114 18Sweden
- School of Life and Environmental SciencesDeakin University75 Pigdons RoadWaurn Ponds3216Australia
| | - Steven D. Melvin
- Australian Rivers Institute, School of Environment and ScienceGriffith UniversityEdmund Rice DriveSouthport4215Australia
| | - Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
- School of Environment and ScienceGriffith University170 Kessels RoadNathan4111Australia
| | - Silvia Mohr
- German Environment Agency (UBA)Wörlitzer Platz 1Dessau‐Roßlau06844Germany
| | - Stephanie Padilla
- Center for Computational Toxicology and ExposureOffice of Research and DevelopmentU.S. EPA, 109 T.W. Alexander DriveDurham27711North CarolinaUSA
| | - Gregory Pyle
- Department of Biological SciencesUniversity of Lethbridge4401 University DriveLethbridgeT1K 3M4AlbertaCanada
| | - Minna Saaristo
- Environment Protection Authority Victoria, EPA Science2 Terrace WayMacleod3085Australia
| | - René Sahm
- German Environment Agency (UBA)Wörlitzer Platz 1Dessau‐Roßlau06844Germany
- Department of Freshwater Ecology in Landscape PlanningUniversity of KasselGottschalkstraße 24Kassel34127Germany
| | - Els Smit
- National Institute for Public Health and the Environment (RIVM)Antonie van Leeuwenhoeklaan 9Bilthoven3721 MAthe Netherlands
| | - Jeffery A. Steevens
- Columbia Environmental Research CenterU.S. Geological Survey (USGS)4200 New Haven RoadColumbia65201MissouriUSA
| | - Sanne van den Berg
- Wageningen University and ResearchP.O. Box 47Wageningen6700 AAthe Netherlands
| | - Laura E. Vossen
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesUlls väg 26Uppsala756 51Sweden
| | - Donald Wlodkowic
- The Neurotox Lab, School of ScienceRMIT University289 McKimmies RoadMelbourne3083Australia
| | - Bob B.M. Wong
- School of Biological SciencesMonash University25 Rainforest WalkMelbourne3800Australia
| | - Michael Ziegler
- Eurofins Aquatic Ecotoxicology GmbHEutinger Strasse 24Niefern‐Öschelbronn75223Germany
- Animal Physiological EcologyUniversity of TübingenAuf der Morgenstelle 5Tübingen72076Germany
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17Umeå907 36Sweden
| |
Collapse
|
4
|
Teixeira C, Rodrigues S, Amorim J, Diogo BS, Pinto I, Carvalho AP, Antunes SC, Teles LO. Comprehensive machine learning assessment of zebrafish behaviour and biochemical markers in response to caffeine exposure. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02873-0. [PMID: 40108086 DOI: 10.1007/s10646-025-02873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Environmental exposure to caffeine (CAF) poses potential risks to aquatic ecosystems, affecting non-target species. This study investigated the chronic effects of environmentally relevant CAF concentrations, ranging from 0.16-50 µg/L, on zebrafish behaviour. A Kohonen-type artificial neural network classified zebrafish behaviour into nine behavioural classes based on a set of movement descriptors (mean meander, mean velocity, instantaneous velocity, distance to centre point, mean angular velocity and instantaneous acceleration), while a comprehensive analysis integrated behavioural classes previously defined and biochemical markers of oxidative stress, lipid peroxidation, reserve energy content, energetic pathways, and neurotoxicity. The discriminant analysis demonstrated that behaviour descriptors and biomarkers individually explained 38% and 67% of data variation, respectively, while the combination resulted in 19 models with 100% correct diagnosis. One of the models (Model A) seemed to suit the best dose-response relationship, incorporating key biomarkers including superoxide dismutase, catalase, glutathione peroxidase activities, and behavioural characteristics such as movement distance and velocity. This suggested methodology offers a different approach to evaluating CAF's ecological impact, highlighting behavioural analysis as a valuable complement to traditional ecotoxicological assessments. This study provides a novel framework for understanding organism-level responses to environmental stressors (e.g., several anthropogenic compounds), utilising Mahalanobis distance as an integrative response index. This approach shows promise for broader application in assessing the impact of various aquatic contaminants on aquatic organisms (from bacteria to fish), potentially extending to pharmaceuticals, pesticides, and industrial pollutants.
Collapse
Affiliation(s)
- Cláudia Teixeira
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
- CIIMAR/CIMAR LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal.
| | - Sara Rodrigues
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIIMAR/CIMAR LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - João Amorim
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIIMAR/CIMAR LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Bárbara S Diogo
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIIMAR/CIMAR LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ivo Pinto
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIIMAR/CIMAR LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- UMIB, Unidade Multidisciplinar de Investigação Biomédica - Instituto Ciências Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - António Paulo Carvalho
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIIMAR/CIMAR LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Sara C Antunes
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIIMAR/CIMAR LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Luís Oliva Teles
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIIMAR/CIMAR LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| |
Collapse
|
5
|
Alonso Á, Llandres-Díez MC, Cruces-Estepa P. Contrasting behavioural responses to concurrent stressors in an aquatic snail: the importance of stress type and combination. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:248-257. [PMID: 39565533 DOI: 10.1007/s10646-024-02835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Behaviour is a fundamental parameter for understanding the animal fitness, serving as an indicator of exposure to stressors. In ecosystems, animals often face multiple stressors simultaneously. Their behavioural responses may vary when exposed to individual stressors, whilst synergistic, additive, or antagonistic effects can result from the interaction of multiple stressors. Therefore, it is imperative to conduct studies that take into account the common occurrence of multi-stress scenarios in aquatic ecosystems. We tested the effects of three sources of stress (acidity (A), toxicity with acetone (T) and conspecific chemical cues (S)) on the behaviour of the aquatic snail Potamopyrgus antipodarum (Tateidae, Mollusca). We evaluated the impact of each stressor, as well as in combinations of two or three stressors simultaneously. The highest time to initiate movement was shown by the animals of the low water pH (A) followed by those exposed to the combination of low water pH and acetone exposure (AT). The differences between the time to initiate movement of each treatment with control revealed a marked decrease in the differences for the snails from the conspecific chemical cues (S) and ST treatments, which mean a higher time to initiate movements. It is concluded that behaviour varied depending on the source and combination of stress. While an acid environment and conspecific signals had contrasting effects when applied separately, their simultaneous exposure resulted in no significant impact. This highlights the importance of considering the combined effects of multiple stressors when extrapolating laboratory results to real-world scenarios, where organisms are often exposed to more than one stressor at a time.
Collapse
Affiliation(s)
- Álvaro Alonso
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego s/n, 28801, Alcalá de Henares, Madrid, Spain.
| | - M C Llandres-Díez
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego s/n, 28801, Alcalá de Henares, Madrid, Spain
| | - P Cruces-Estepa
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego s/n, 28801, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
6
|
Salvatierra D, Islam MA, González MP, Blasco J, Araújo CVM. The Heterogeneous Multi-Habitat Assay System (HeMHAS): A non-forced ecotoxicology test system to study contamination-driven habitat selection behavior from landscape and stress ecology perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125818. [PMID: 39929425 DOI: 10.1016/j.envpol.2025.125818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
In ecotoxicology, the non-forced exposure approach provides a complementary perspective to traditional ecotoxicity tests by giving the organisms an opportunity to flee to adjacent, less contaminated areas, thus allowing them to escape from any toxic effects. This approach recognizes the chemical heterogeneity among connected habitats with different levels of contamination. The Heterogeneous Multi-Habitat Assay System (HeMHAS) is a non-forced aquatic assay system that allows the free movement of the organisms throughout various compartments with the possibility to select an area according to its attractiveness or aversiveness. This system expands the environmental risk assessment (ERA) by studying the habitat selection response based on the organism's ability to perceive the surrounding environment. This represents a new frontier in ERA, where different factors other than just contamination can be integrated to assess the cost-benefits balance when a habitat is selected. Thus, the HeMHAS has become a valuable habitat-selection based approach to assess the factors driving the spatial distribution of organisms in connected ecosystems with different levels of contamination. The aim of the current work is to describe the different types of HeMHAS, their ecological relevance, technical advantages and disadvantages, and to critically discuss its applicability and results that have been published in line with landscape and stress ecology.
Collapse
Affiliation(s)
- David Salvatierra
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Av. República Saharaui, s/n, Puerto Real, Cádiz, 11519, Spain.
| | - Mohammed Ariful Islam
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Av. República Saharaui, s/n, Puerto Real, Cádiz, 11519, Spain; Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - María Pilar González
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Av. República Saharaui, s/n, Puerto Real, Cádiz, 11519, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Av. República Saharaui, s/n, Puerto Real, Cádiz, 11519, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Av. República Saharaui, s/n, Puerto Real, Cádiz, 11519, Spain
| |
Collapse
|
7
|
Latchere O, Métais I, Perrein-Ettajani H, Lemoing M, Feurtet-Mazel A, Gonzalez P, Daffe G, Gigault J, Catrouillet C, Châtel A, Baudrimont M. Trophic transfer effects of PS nanoplastics and field-derived nanoplastics in the freshwater clam Corbicula fluminea. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107160. [PMID: 39566259 DOI: 10.1016/j.aquatox.2024.107160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/18/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024]
Abstract
Plastic pollution is of global concern. Many studies investigated the effect of micro and nanoplatics towards aquatic organisms. However, relatively few studies were assessed on freshwater organisms. Another aspect of this pollution is the impact of trophic transfer on plastic distribution and on food chain in order to evaluate its potential risk towards environmental and human health. In this context, the objective of this study was to assess the ecotoxicological impacts of different types of nanoplastics (NPs) on freshwater organisms exposed through trophic transfer. Freshwater microalgae Scenedesmus subspicatus were contaminated for 48 h with realistic concentrations of NPs (0.008, 10 and 100 µg/L). Two types of NPs were tested: commercial PS NPs and NPs generated from macro-sized plastics collected in the field (ENV NPs). Freshwater Corbicula fluminea bivalves were then fed with the contaminated algae every 48 h for 21 days. Results showed that trophic exposure led to the induction of oxidative stress (CAT activity). Overall, NPs trophic exposure caused downregulations of genes implicated in many cellular processes (immunity, oxidative stress, neurotoxicity, endocytosis, apoptosis). This present study allowed to demonstrate the relevance of investigating the trophic transfer effects of NPs on a freshwater trophic chain. Further studies should focus more on larger levels of the food chain.
Collapse
Affiliation(s)
- Oihana Latchere
- Université Catholique de l'Ouest, laboratoire BIOSSE, 3 place André Leroy, Angers, France.
| | - Isabelle Métais
- Université Catholique de l'Ouest, laboratoire BIOSSE, 3 place André Leroy, Angers, France
| | | | - Magalie Lemoing
- Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Station marine d'Arcachon, Place Du Dr Peyneau, 33120, Arcachon, France
| | - Agnès Feurtet-Mazel
- Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Station marine d'Arcachon, Place Du Dr Peyneau, 33120, Arcachon, France
| | - Patrice Gonzalez
- Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Station marine d'Arcachon, Place Du Dr Peyneau, 33120, Arcachon, France
| | - Guillemine Daffe
- Observatoire Aquitain des Sciences de l'Univers, UAR 2567 POREA Université de Bordeaux (Bordeaux,France) - F-33615, Pessac, France
| | - Julien Gigault
- Université Laval, Département de Biologie, Pavillon Alexandre-Vachon, 1045, Av. de La Médecine, Local 2064, Québec, Québec, G1V0A6, Canada; Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France
| | - Charlotte Catrouillet
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France; Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| | - Amélie Châtel
- Université Catholique de l'Ouest, laboratoire BIOSSE, 3 place André Leroy, Angers, France
| | - Magalie Baudrimont
- Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Station marine d'Arcachon, Place Du Dr Peyneau, 33120, Arcachon, France
| |
Collapse
|
8
|
Chan WS, Santobuono M, D'Amico E, Selck H. The antidepressant, sertraline, impacts growth and reproduction in the benthic deposit feeder, Tubifex tubifex. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117134. [PMID: 39357382 DOI: 10.1016/j.ecoenv.2024.117134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Among emerging contaminants, pharmaceuticals are considered one of the most pertinent substances that may threaten aquatic ecosystems. Pharmaceuticals are designed to be directed at specific metabolic- and molecular pathways. Thus, they are assumed to be still biologically active when entering the ecosystem and may result in unpremeditated impacts on non-target organisms. One of the most widely used selective serotonin reuptake inhibitors, sertraline (an antidepressant), is regularly found in aquatic environments. However, knowledge about the effects, and in particular, of sediment-associated sertraline in benthic invertebrates is limited. We examined the impacts of chronic exposure (28 d) to sediment-associated sertraline (3.3, 33, 330 μg/g dw sed.) on survival, growth and reproduction in the deposit-feeding oligochaete, Tubifex tubifex. Sertraline significantly decreased T. tubifex survival and growth. Worms exposed to high sertraline concentrations (330 μg/g) had a lower growth rate and reproduction, as indicated by a significantly lower number of cumulated cocoons. Worms exposed to an environmentally relevant concentration (3.3 μg/g) decreased growth but maintained a reproduction rate similar to that of the control. The implications are that adult worms exposed to high sertraline concentrations presumably required more energy for maintenance and detoxification, thereby reducing available energy for reproduction and growth. This represents a trade-off between survival, reproduction and growth. In contrast, T. tubifex exposed to environmentally relevant concentrations allocated more energy to reproduction by slightly increasing the number of cocoons produced and reducing growth. However, the quantity and quality of offspring may be impacted as we observed fewer juveniles in the environmentally relevant treatment than in the control. Overall, the results indicate that sediment-associated sertraline is bioavailable and negatively impacts T. tubifex survival, growth, and reproduction even at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Wing Sze Chan
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Martina Santobuono
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Elettra D'Amico
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Henriette Selck
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
9
|
Soloperto S, Renaux M, Lecarpentier L, Minier C, Aroua S, Halm-Lemeille MP, Jozet-Alves C. 17α-Ethinylestradiol exposure disrupts anxiety-like behaviours but not social preference in sea bass larvae (Dicentrarchus labrax). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55708-55719. [PMID: 39243328 DOI: 10.1007/s11356-024-34922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are widespread pollutants known to interfere with hormonal pathways and to disrupt behaviours. Standardised behavioural procedures have been developed in common fish model species to assess the impact of various pollutants on behaviours such as locomotor activity and anxiety-like as well as social behaviours. These procedures need now to be adapted to improve our knowledge on the behavioural effects of EDCs on less studied marine species. In this context, the European sea bass (Dicentrarchus labrax) is emerging as a valuable species representative of the European marine environment. Here, we designed and validated a two-step procedure allowing to sequentially assess anxiety-like behaviours (novel tank test) and social preference (visual social preference test) in sea bass. Thereafter, using this procedure, we evaluated whether social behavioural disruption occurs in 2-month-old larvae after an 8-day exposure to a xenoestrogen, the 17α-ethinylestradiol (EE2 at 0.5 and 50 nM). Our results confirmed previous studies showing that exposure to 50 nM of EE2 induces a significant increase in anxiety-like behaviours in sea bass larvae. On the contrary, social preference seemed unaffected whatever the EE2 concentration, suggesting that social behaviour has more complex mechanical regulations than anxiety.
Collapse
Affiliation(s)
- Sofia Soloperto
- Normandie Univ, UNIHAVRE, UMR-I 02 INERIS-URCA-ULH SEBIO, FR CNRS 3730 Scale, 25, Rue Philippe Lebon, 76063, Le Havre Cedex, France.
| | - Maelle Renaux
- Unité Littoral Ifremer, LITTORAL, 14520, Port-en-Bessin, France
| | - Lucas Lecarpentier
- Normandie Univ, Unicaen, CNRS, 14000, Caen, EthoS, France
- Univ Rennes, CNRS, EthoS (Éthologie Animale Et Humaine) - UMR 6552, 35000, Rennes, France
| | - Christophe Minier
- Normandie Univ, UNIHAVRE, UMR-I 02 INERIS-URCA-ULH SEBIO, FR CNRS 3730 Scale, 25, Rue Philippe Lebon, 76063, Le Havre Cedex, France
| | - Salima Aroua
- Normandie Univ, UNIHAVRE, UMR-I 02 INERIS-URCA-ULH SEBIO, FR CNRS 3730 Scale, 25, Rue Philippe Lebon, 76063, Le Havre Cedex, France
| | | | - Christelle Jozet-Alves
- Normandie Univ, Unicaen, CNRS, 14000, Caen, EthoS, France
- Univ Rennes, CNRS, EthoS (Éthologie Animale Et Humaine) - UMR 6552, 35000, Rennes, France
| |
Collapse
|
10
|
Ge J, Slotsbo S, Sørensen JG, Holmstrup M. Does copper contamination change thermotaxis of the soil arthropod Folsomia candida (Collembola)? J Therm Biol 2024; 124:103950. [PMID: 39167908 DOI: 10.1016/j.jtherbio.2024.103950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Behavioural thermoregulation (thermotaxis) is essential for soil invertebrates to evade thermal extremes in terrestrial environments. Extensive and continuous use of copper (Cu) based products has led to elevated Cu concentration in soils across the globe and in some areas reaching concentrations that are hazardous to soil invertebrates. We hypothesised that environmental stressors, for example, exposure to heavy metals may compromise the adaptive behavioural thermoregulation of organisms, but very little is known of such interactions. In this study, we chose Cu as a model toxicant and investigated the potential effect of Cu-contaminated soils on the behavioural thermoregulation of springtails (Folsomia candida). We measured the distribution of springtails when placed on a temperature gradient ranging from 6 to 46 °C and estimated their thermal preference as an indicator of behavioural thermoregulation. Results showed that within 60 min of being introduced to the thermal gradient, the distribution of springtails was unimodal with slight skewness towards high temperature. Springtails exhibited a consistent preferred temperature range of approximately 21-23 °C across all Cu exposure levels and time points. However, Cu contamination increased the frequency of springtails recorded along the gradient where temperature was above 30 °C. We interpreted this observation as Cu-exposed animals having an elevated risk of entering heat coma and not being able to evade noxious temperatures. We conclude that Cu contamination does not alter the thermal preference of F. candida but compromises their ability to tolerate extreme high temperature. Incorporating behavioural responses into ecotoxicological assessments provides ecologically relevant insights into the impacts of chemical pollution on soil ecosystems.
Collapse
Affiliation(s)
- Jian Ge
- Section of Terrestrial Ecology, Department of Ecoscience, Aarhus University, Aarhus, Denmark.
| | - Stine Slotsbo
- Section of Terrestrial Ecology, Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | - Jesper Givskov Sørensen
- Section for Genetics, Ecology & Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Martin Holmstrup
- Section of Terrestrial Ecology, Department of Ecoscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Addy-Orduna LM, Ortiz-Santaliestra ME, Mougeot F, Bolívar-Muñoz P, Camarero PR, Mateo R. Behavioral Responses of Imidacloprid-Dosed Farmland Birds to a Simulated Predation Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39034620 DOI: 10.1021/acs.est.4c01893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Sublethal exposure to imidacloprid and other neonicotinoid insecticides may affect the neurological functions of birds. As such, behavior may be compromised. Here, we tested experimentally the effects of 1 and 6 mg/kg bw of imidacloprid on the antipredator behavioral responses of the red-legged partridge (Alectoris rufa) to simulated predator threats. Sixty-six partridges were challenged in groups or individually to intra- and interspecific alarm calls, to a raptor silhouette (aerial predation risk), and to a fox model (terrestrial predation risk). Antipredator behaviors were recorded as active (escape, active vigilance) and passive (passive vigilance, crouching, and freezing) responses. Latency in response to the stimuli, percentage of individuals who responded, response duration, speed of active responses, and vocalizations were measured. In experiments with partridges in the group, crouching against simulated predation risk lasted less time in birds treated with 6 mg a.i./kg bw than in control birds. In the experiments with individual partridges, passive vigilance against the intraspecific alarm lasted longer in birds treated with 6 mg a.i./kg bw than in control birds. The observed hyperreactivity to the predatory threat after a sublethal imidacloprid exposure can have consequences on survival under field conditions, where predation is a main driver of population dynamics.
Collapse
Affiliation(s)
- Laura M Addy-Orduna
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Paraná, Ruta 11 km 12.5, 3100 Paraná, Entre Ríos, Argentina
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Paula Bolívar-Muñoz
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| |
Collapse
|
12
|
Moreira RA, González MP, Dias MA, Ogura AP, Mena F, Montagner CC, Espíndola ELG, Blasco J, Parra G, Araújo CVM. Ecological consequences when organisms avoid a contaminated environment: A study evaluating the toxicity of fipronil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171480. [PMID: 38492607 DOI: 10.1016/j.scitotenv.2024.171480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
The ability of aquatic organisms to sense the surrounding environment chemically and interpret these signals correctly is crucial to their survival and ecological niche. This study applied the Heterogenous Multi-Habitat Assay System - HeMHAS to evaluate the avoidance potential of Daphnia magna to detect fipronil-contaminated habitats in a connected landscape after a short (48 h), previous, forced exposure to an environmentally relevant concentration of the same insecticide. The swimming of daphnids was also analyzed by recording the total distance covered. D. magna preferred areas with less contamination, although the effect of fipronil on their swimming ability (a decrease) was observed for all the concentrations tested. The application of non-forced multi-compartment exposure methodologies is a recent trend and is ecologically relevant as it is based on how contamination can really produce changes in an organism's habitat selection. Finally, we consider the importance of more non-forced exposure approaches where Stress Ecology can be aggregated to improve systemic understanding of the risk that contaminants pose to aquatic ecosystems from a broader landscape perspective.
Collapse
Affiliation(s)
- Raquel A Moreira
- NEEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970 São Carlos, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália, Km 8, Rio Grande 96203-900, Rio Grande do Sul, Brazil.
| | - María Pilar González
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Campus Universitario Río San Pedro, 11519 Puerto Real, Spain
| | - Mariana A Dias
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Allan P Ogura
- NEEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970 São Carlos, Brazil
| | - Freylan Mena
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional (UNA), Heredia, Costa Rica
| | - Cassiana C Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Evaldo L G Espíndola
- NEEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970 São Carlos, Brazil
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Campus Universitario Río San Pedro, 11519 Puerto Real, Spain
| | - Gema Parra
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus de Las Lagunillas S/n, E-23071 Jaén, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Campus Universitario Río San Pedro, 11519 Puerto Real, Spain
| |
Collapse
|
13
|
Bjedov D, Barbosa RS, de Oliveira DP, Dorta DJ, Sarmento MI, Sarmento RA, Silva ALP, Gravato C. A Dangerous Couple: Sequential Effect of Phosphorus Flame-Retardant and Polyurethane Decrease Locomotor Activity in Planarian Girardia tigrina. BIOLOGY 2024; 13:337. [PMID: 38785819 PMCID: PMC11117760 DOI: 10.3390/biology13050337] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Understanding the interplay among organophosphorus flame retardants (OPFRs), microplastics, and freshwater organisms is crucial for unravelling the dynamics within freshwater environments and foreseeing the potential impacts of organic pollutants and plastic contamination. For that purpose, the present research assessed the exposure impact of 10 mg L-1 flame-retardant aluminium diethylphosphinate (ALPI), 10 μg mg-1liver microplastics polyurethane (PU), and the combination of ALPI and PU on the freshwater planarian Girardia tigrina. The exposure to both ALPI and PU revealed a sequential effect, i.e., a decrease in locomotor activity, while oxidative stress biomarkers (total glutathione, catalase, glutathione S-transferase, lipid peroxidation) and metabolic responses (cholinesterase activity, electron transport system, and lactate dehydrogenase) remained unaffected. Despite this fact, it was possible to observe that the range of physiological responses in exposed organisms varied, in particular in the cases of the electron transport system, cholinesterase activity, glutathione S-transferase, catalase, and levels of total glutathione and proteins, showing that the energetic costs for detoxification and antioxidant capacity might be causing a lesser amount of energy allocated for the planarian activity. By examining the physiological, behavioural, and ecological responses of planarians to these pollutants, insights can be gained into broader ecosystem-level effects and inform strategies for mitigating environmental risks associated with OPFRs and microplastic pollution in freshwater environments.
Collapse
Affiliation(s)
- Dora Bjedov
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Rone S. Barbosa
- Graduate Program in Forestry and Environmental Sciences, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi 77402-970, TO, Brazil (M.I.S.); (R.A.S.)
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences, University of São Paulo, Campus de Ribeirão Preto, Ribeirão Preto 77402-970, SP, Brazil;
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara 14800-060, SP, Brazil;
| | - Daniel Junqueira Dorta
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara 14800-060, SP, Brazil;
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Maíra Ignacio Sarmento
- Graduate Program in Forestry and Environmental Sciences, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi 77402-970, TO, Brazil (M.I.S.); (R.A.S.)
| | - Renato Almeida Sarmento
- Graduate Program in Forestry and Environmental Sciences, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi 77402-970, TO, Brazil (M.I.S.); (R.A.S.)
| | - Ana L. Patrício Silva
- Centre for Environmental and Marine Studies (CESAM), Departament of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Carlos Gravato
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
14
|
Porseryd T, Larsson J, Lindman J, Malmström E, Smolarz K, Grahn M, Dinnétz P. Effects on food intake of Gammarus spp. after exposure to PFBA in very low concentrations. MARINE POLLUTION BULLETIN 2024; 202:116369. [PMID: 38640762 DOI: 10.1016/j.marpolbul.2024.116369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of thousands of highly persistent anthropogenic chemicals widely used in many industries. Therefore, they are, ubiquitously present in various types of environments. Despite their omnipresence, ecotoxicological studies of most PFAS are scarce, and those available often assess the effects of long chain PFAS. In this study, we present the results of an exposure experiment in which wild aquatic amphipod Gammarus spp. was exposed to the short chain perfluorinated substance perfluorobutanoic acid (PFBA) at very low and environmentally relevant concentrations of 0, 10 and 100 ng/L. The exposure lasted for 12 days, and food intake and non-reproductive behavior were analyzed. Exposure to 10 and 100 ng/L PFBA resulted in a lower consumption of food during exposure but no effect on behavior was found.
Collapse
Affiliation(s)
- Tove Porseryd
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden.
| | - Josefine Larsson
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden; Marint centrum, Simrishamn Kommun, Simrishamn, Sweden
| | - Johanna Lindman
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Erica Malmström
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Poland
| | - Mats Grahn
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Patrik Dinnétz
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| |
Collapse
|
15
|
Di Liberto JF, Griffith SC, Hall CJ, Mendelsohn AS, Swaddle JP. Exposure to Sublethal Concentrations of Lead (Pb) Affects Ecologically Relevant Behaviors in House Sparrows (Passer domesticus). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:199-216. [PMID: 38598146 PMCID: PMC11032286 DOI: 10.1007/s00244-024-01062-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Global contamination of environments with lead (Pb) poses threats to many ecosystems and populations. While exposure to Pb is toxic at high concentrations, recent literature has shown that lower concentrations can also cause sublethal, deleterious effects. However, there remains relatively little causal investigation of how exposure to lower concentrations of environmental Pb affects ecologically important behaviors. Behaviors often represent first-line responses of an organism and its internal physiological, molecular, and genetic responses to a changing environment. Hence, better understanding how behaviors are influenced by pollutants such as Pb generates crucial information on how species are coping with the effects of pollution more broadly. To better understand the effects of sublethal Pb on behavior, we chronically exposed adult wild-caught, captive house sparrows (Passer domesticus) to Pb-exposed drinking water and quantified a suite of behavioral outcomes: takeoff flight performance, activity in a novel environment, and in-hand struggling and breathing rate while being handled by an experimenter. Compared to controls (un-exposed drinking water), sparrows exposed to environmentally relevant concentrations of Pb exhibited decreases in takeoff flight performance and reduced movements in a novel environment following 9-10 weeks of exposure. We interpret this suite of results to be consistent with Pb influencing fundamental neuro-muscular abilities, making it more difficult for exposed birds to mount faster movements and activities. It is likely that suppression of takeoff flight and reduced movements would increase the predation risk of similar birds in the wild; hence, we also conclude that the effects we observed could influence fitness outcomes for individuals and populations altering ecological interactions within more naturalistic settings.
Collapse
Affiliation(s)
- Joseph F Di Liberto
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biology, William & Mary, Williamsburg, VA, USA.
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Cara J Hall
- Department of Biology, William & Mary, Williamsburg, VA, USA
| | | | - John P Swaddle
- Department of Biology, William & Mary, Williamsburg, VA, USA
- Institute for Integrative Conservation, William & Mary, Williamsburg, VA, USA
| |
Collapse
|
16
|
Capparelli MV, Dzul-Caamal R, Rodríguez-Cab EM, Borges-Ramírez MM, Osten JRV, Beltran K, Pichardo-Casales B, Ramírez-Olivares AI, Vargas-Abúndez JA, Thurman CL, Moulatlet GM, Rosas C. Synergistic effects of microplastic and lead trigger physiological and biochemical impairment in a mangrove crab. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109809. [PMID: 38056684 DOI: 10.1016/j.cbpc.2023.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
Microplastics (MP) are vectors for other environmental contaminants, such as metals, being a considerable problem, especially in the aquatic ecosystem. To investigate the combined effects of MP (high density polyethylene) with lead (Pb), we exposed the mangrove fiddler crab Minuca vocator to Pb (50 mg L-1), and MP (25 mg L-1) alone and in mixture, for 5 days. We aimed to determine Pb and MP bioaccumulation, as well as physiological (oxygen consumption and hemolymph osmolality) and biochemical (superoxide dismutase, catalase, glutathione peroxidase, and lipid peroxidation) traits effects. Co-exposure of MP and Pb significantly increased the bioaccumulation of Pb, but reduced MP tissue accumulation. Regarding the physiological traits, increasing osmolality and oxygen consumption rates compared to the control were observed, particularly in the combined Pb and MP exposure. As to biochemical traits, the combination of Pb and MP induced the most significant responses in the enzymatic profile antioxidant enzyme activity. The catalase (CAT), glutathione peroxidase (GPx), and dismutase superoxide (SOD) decreased compared to individual exposure effects; the combination of MP and Pb had a synergistic effect on promoting lipid peroxidation (LPO). The co-exposure of MP and Pb acted synergistically when compared to the effects of the isolated compounds. Due to the increasing MP contamination in mangroves, more severe physiological and biochemical effects can be expected on mangrove crabs exposed to metal contamination.
Collapse
Affiliation(s)
- Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico.
| | - Ricardo Dzul-Caamal
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Campus VI, Av. Héroe de Nacozari 480, Universidad Autónoma de Campeche, 24070 Campeche, Mexico
| | - Erick M Rodríguez-Cab
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Campus VI, Av. Héroe de Nacozari 480, Universidad Autónoma de Campeche, 24070 Campeche, Mexico
| | - Merle M Borges-Ramírez
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Campus VI, Av. Héroe de Nacozari 480, Universidad Autónoma de Campeche, 24070 Campeche, Mexico
| | - Jaime Rendón-von Osten
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Campus VI, Av. Héroe de Nacozari 480, Universidad Autónoma de Campeche, 24070 Campeche, Mexico
| | - Karen Beltran
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico
| | - Brian Pichardo-Casales
- Escuela Nacional de Estudios Superiores Unidad Morelia (ENES Morelia), Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, C.P. 58190 Morelia, Michoacán, Mexico
| | | | | | - Carl L Thurman
- Department of Biology, University of Northern Iowa, 1227 W. 27 th St., Cedar Falls, IO, USA
| | - Gabriel M Moulatlet
- Arizona Institute for Resilience, University of Arizona, Tucson, AZ, USA; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Carlos Rosas
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
17
|
Raman NV, Dubey A, van Donk E, von Elert E, Lürling M, Fernandes TV, de Senerpont Domis LN. Understanding the differential impacts of two antidepressants on locomotion of freshwater snails (Lymnaea stagnalis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12406-12421. [PMID: 38233708 PMCID: PMC10869440 DOI: 10.1007/s11356-024-31914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
There is growing evidence of negative impacts of antidepressants on behavior of aquatic non-target organisms. Accurate environmental risk assessment requires an understanding of whether antidepressants with similar modes of action have consistent negative impacts. Here, we tested the effect of acute exposure to two antidepressants, fluoxetine and venlafaxine (0-50 µg/L), on the behavior of non-target organism, i.e., freshwater pond snail, Lymnaea stagnalis. As compounds interact with chemical cues in the aquatic ecosystems, we also tested whether the effects altered in the presence of bile extract containing 5α-cyprinol sulfate (5α-CPS), a characterized kairomone of a natural predator, common carp (Cyprinus carpio). Behavior was studied using automated tracking and analysis of various locomotion parameters of L. stagnalis. Our results suggest that there are differences in the effects on locomotion upon exposure to venlafaxine and fluoxetine. We found strong evidence for a non-monotonic dose response on venlafaxine exposure, whereas fluoxetine only showed weak evidence of altered locomotion for a specific concentration. Combined exposure to compounds and 5α-CPS reduced the intensity of effects observed in the absence of 5α-CPS, possibly due to reduced bioavailability of the compounds. The results highlight the need for acknowledging different mechanisms of action among antidepressants while investigating their environmental risks. In addition, our results underline the importance of reporting non-significant effects and acknowledging individual variation in behavior for environmental risk assessment.
Collapse
Affiliation(s)
- Nandini Vasantha Raman
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Asmita Dubey
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
- Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, The Netherlands.
| | - Ellen van Donk
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Department of Environmental Biology, University of Utrecht, Utrecht, The Netherlands
| | - Eric von Elert
- Aquatic Chemical Ecology, Biocenter, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Miquel Lürling
- Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, The Netherlands
| | - Tânia V Fernandes
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Lisette N de Senerpont Domis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, The Netherlands
- Department of Pervasive Systems, EEMCS, University of Twente & Department of Water Resources, ITC, University of Twente, Enschede, The Netherlands
| |
Collapse
|
18
|
Pereira AC, Saraiva A, Oliva-Teles L, Guimarães L, Carvalho AP. Ecotoxicological Effects of Potassium Dichromate on the Tadpole Shrimp Triops longicaudatus. Animals (Basel) 2024; 14:358. [PMID: 38338000 PMCID: PMC10854805 DOI: 10.3390/ani14030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The tadpole shrimp Triops longicaudatus is a freshwater crustacean with fast embryonic and larval development, short life cycle, and high fecundity. They are very active swimmers of a reasonable size, easy to spot and record. Such characteristics make it a promising candidate as an experimental model in ecotoxicology to evaluate the effects of aquatic pollutants, particularly using its locomotor behavior as an endpoint. To evaluate the sensitivity of T. longicaudatus and develop endpoints of interest, we conducted exposure experiments with lethal and sub-lethal concentrations of potassium dichromate, a compound known for its ecotoxicological importance and as a hexavalent chromium source. The endpoints evaluated were mortality, growth, sexual maturation, reproductive output, cholinesterase activity and locomotor/swimming behavior. The 96 h median lethal concentration was found to be 65 µg/L. Furthermore, exposure to potassium dichromate at higher concentrations had a significant negative impact on the growth rate of T. longicaudatus in terms of both body mass and length. The time for maturation was also delayed at higher concentrations. In addition, locomotor behavior allowed for the discrimination of all tested chromium concentrations and the control group and from each other, proving to be the most sensitive endpoint. Overall, the data support the potential of T. longicaudatus as a model for ecotoxicity testing, using apical endpoints with impact at the population level; in particular, results suggest that behavior assessments in this species might be useful for detecting hazardous compounds in environmental monitoring of freshwater ecosystems.
Collapse
Affiliation(s)
- André Carido Pereira
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (A.C.P.); (A.S.); (L.O.-T.)
- Biology Department, FCUP—Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Aurélia Saraiva
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (A.C.P.); (A.S.); (L.O.-T.)
- Biology Department, FCUP—Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Luís Oliva-Teles
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (A.C.P.); (A.S.); (L.O.-T.)
- Biology Department, FCUP—Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Laura Guimarães
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (A.C.P.); (A.S.); (L.O.-T.)
- Biology Department, FCUP—Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - António Paulo Carvalho
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal; (A.C.P.); (A.S.); (L.O.-T.)
- Biology Department, FCUP—Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
19
|
Ruck G, Decamps A, Aubin JB, Quéau H, Garnero L, Cavanna T, Bertrand-Krajewski JL, Neuzeret D, Geffard O, Chaumot A. Avoidance behaviour of aquatic macroinvertebrates for real-time detection of micropollutant surge in wastewater effluents. WATER RESEARCH 2023; 242:120228. [PMID: 37348420 DOI: 10.1016/j.watres.2023.120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Micropollutants are regularly detected at the outlets of wastewater treatment plants (WWTPs). Across urban and industrial WWTPs, monitoring directives only require assessment for a handful of chemicals via sampling methods that fail to capture the temporal variability in micropollutant discharge. In this study, we develop a biotest for real-time on-line monitoring of micropollutant discharge dynamics in WWTPs effluents. The selected biomonitoring device ToxMate uses videotracking of invertebrate movement, which was used to deduce avoidance behaviour of the amphipod Gammarus fossarum. Organism conditioning was set up to induce a state of minimal locomotor activity in basal conditions to maximise avoidance signal sensitivity to micropollutant spikes. We showed that with a standardised protocol, it was possible to minimise both overall movement and sensitivity to physio-chemical variations typical to WWTP effluents, as well as capture the spikes of two micropollutants upon exposure (copper and methomyl). Spikes in avoidance behaviour were consistently seen for the two chemicals, as well as a strong correlation between avoidance intensity and spiked concentration. A two-year effluent monitoring case study also illustrates how this biomonitoring method is suitable for real-time on-site monitoring, and shows a promising non-targeted approach for characterising complex micropollutant discharge variability at WWTP effluents, which today remains poorly understood.
Collapse
Affiliation(s)
- G Ruck
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, Villeurbanne F-69625, France; Viewpoint, 67 rue Copernic, Civrieux F-01390, France
| | - A Decamps
- Viewpoint, 67 rue Copernic, Civrieux F-01390, France
| | - J B Aubin
- Laboratory DEEP - EA 7429, University of Lyon, INSA Lyon, 11 rue de la physique, Villeurbanne F-69621, France
| | - H Quéau
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, Villeurbanne F-69625, France
| | - L Garnero
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, Villeurbanne F-69625, France
| | - T Cavanna
- Viewpoint, 67 rue Copernic, Civrieux F-01390, France
| | - J L Bertrand-Krajewski
- Laboratory DEEP - EA 7429, University of Lyon, INSA Lyon, 11 rue de la physique, Villeurbanne F-69621, France
| | - D Neuzeret
- Viewpoint, 67 rue Copernic, Civrieux F-01390, France
| | - O Geffard
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, Villeurbanne F-69625, France
| | - A Chaumot
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, Villeurbanne F-69625, France.
| |
Collapse
|
20
|
König Kardgar A, Ghosh D, Sturve J, Agarwal S, Carney Almroth B. Chronic poly(l-lactide) (PLA)- microplastic ingestion affects social behavior of juvenile European perch (Perca fluviatilis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163425. [PMID: 37059150 DOI: 10.1016/j.scitotenv.2023.163425] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Juvenile perch were exposed to 2 % (w/w) poly(l-lactide) (PLA) microplastic particles (90-150 μm) in food pellets, or 2 % (w/w) kaolin particles, and a non-particle control food over 6 months. Chronic ingestion of PLA microplastics significantly affected the social behavior of juvenile perch, evident as a significantly increased reaction to the vision of conspecifics. PLA ingestion did not alter life cycle parameters, or gene expression levels. In addition to reactions to conspecifics, fish that ingested microplastic particles showed tendencies to decrease locomotion, internal schooling distance, and active predator responses. The ingestion of natural particles (kaolin) significantly downregulated the expression of genes related to oxidative stress and androgenesis in the liver of juvenile perch, and we found tendencies to downregulated expression of genes related to xenobiotic response, inflammatory response, and thyroid disruption. The present study demonstrated the importance of natural particle inclusion and the potential behavioral toxicity of one of the commercially available biobased and biodegradable polymers.
Collapse
Affiliation(s)
- Azora König Kardgar
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Dipannita Ghosh
- Macromolecular Chemistry II, University of Bayreuth, Bayreuth, Germany.
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Seema Agarwal
- Macromolecular Chemistry II, University of Bayreuth, Bayreuth, Germany.
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
21
|
Cheron M, Brischoux F. Exposure to Low Concentrations of AMPA Influences Morphology and Decreases Survival During Larval Development in a Widespread Amphibian Species. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:92-103. [PMID: 37468648 DOI: 10.1007/s00244-023-01008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/02/2023] [Indexed: 07/21/2023]
Abstract
Glyphosate's primary metabolite, AMPA (aminomethylphosphonic acid), is one of the most widely detected anthropogenic substance in surface waters worldwide. However, ecotoxicological studies on the potential effects of this metabolite at environmental concentrations on wildlife are scarce. Yet, due to its chemical properties, AMPA is likely to affect non-target species. In this study, we investigated sublethal effects of environmental concentrations of AMPA on the larval development of a widespread amphibian species, the spined toad Bufo spinosus. We performed a factorial experiment to study the effect of concentration and the timing of exposure (during embryonic development, larval development or both) to AMPA on the morphology, rate of development and survival of tadpoles. AMPA and timing of exposure interactively affected tadpole size (individuals exposed to AMPA after hatching were transitorily smaller, while individuals exposed to AMPA before hatching were longer), but not duration of development. Most of these effects were linked to exposure during embryonic development. Such effects in individuals exposed during embryonic development solely were long-lasting and persisted until the latest larval stages. Finally, we found that exposure to AMPA after hatching (during the larval stage) increased mortality. Exposure to low environmental concentrations of AMPA could have long-lasting consequences on fitness and population persistence. These findings are especially important to take into account at a time when multiple threats can interact to affect wildlife.
Collapse
Affiliation(s)
- Marion Cheron
- Centre d'Etudes Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360, Villiers en Bois, France.
| |
Collapse
|
22
|
Belamy T, Legeay A, Cachot J, Clérandeau C, Baudrimont M. Locomotion behavior of juveniles of the freshwater pearl mussel Margaritifera margaritifera: A new non-invasive tool for the evaluation of stress effects. CHEMOSPHERE 2023; 327:138521. [PMID: 36990359 DOI: 10.1016/j.chemosphere.2023.138521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The lack of knowledge about the sensitivity of the endangered freshwater pearl mussel (FWPM) Margaritifera margaritifera to environmental pollution and the rapid decline of its populations in Europe, have led to the need of developing non-destructive experimental protocols in order to assess the impact of such pollution. This species has a complex life cycle and the early life stages are considered the most sensitive. This study deals with the development of a methodology for the assessment of juvenile mussels' locomotor behavior using an automated video tracking system. Different parameters were determined such as the duration of the video recording and light exposure as a stimulus during the experiment. Locomotion behavior pattern of juveniles was assessed in control condition and also following exposure to sodium chloride as a positive control in order to validate the experimental protocol developed in this study. Results showed that juveniles locomotion behavior was stimulated under light exposure. Moreover, exposure to sublethal concentrations of sodium chloride (0.8 and 1.2 g/L) for 24 h was found to decrease juveniles' locomotion by almost three-times, thus validating our experimental methodology. This study allowed to provide a new tool for the assessment of stress condition impacts on the juveniles of the endangered FWPM, highlighting the interest of such non-destructive biomarker of health for protected species. Consequently, this will help in the improvement of our knowledge on M. margaritifera sensitivity to environmental pollution.
Collapse
Affiliation(s)
- Tiare Belamy
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France; University of French Polynesia, EIO, UMR 241, F-98702, Faa'a, Tahiti, French Polynesia.
| | - Alexia Legeay
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - Jérôme Cachot
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | | | - Magalie Baudrimont
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France.
| |
Collapse
|
23
|
Słoczyńska K, Orzeł J, Murzyn A, Popiół J, Gunia-Krzyżak A, Koczurkiewicz-Adamczyk P, Pękala E. Antidepressant pharmaceuticals in aquatic systems, individual-level ecotoxicological effects: growth, survival and behavior. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106554. [PMID: 37167880 DOI: 10.1016/j.aquatox.2023.106554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
The growing consumption of antidepressant pharmaceuticals has resulted in their widespread occurrence in the environment, particularly in waterways with a typical concentration range from ng L-1 to μg L-1. An increasing number of studies have confirmed the ecotoxic potency of antidepressants, not only at high concentrations but also at environmentally relevant levels. The present review covers literature from the last decade on the individual-level ecotoxicological effects of the most commonly used antidepressants, including their impact on behavior, growth, and survival. We focus on the relationship between antidepressants physico-chemical properties and dynamics in the environment. Furthermore, we discuss the advantages of considering behavioral changes as sensitive endpoints in ecotoxicology, as well as some current methodological shortcomings in the field, including low standardization, reproducibility and context-dependency.
Collapse
Affiliation(s)
- Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Justyna Orzeł
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Aleksandra Murzyn
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
24
|
Liang W, Li B, Jong MC, Ma C, Zuo C, Chen Q, Shi H. Process-oriented impacts of microplastic fibers on behavior and histology of fish. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130856. [PMID: 36753910 DOI: 10.1016/j.jhazmat.2023.130856] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Microplastic pollution has raised global concern for its hazards to biota. To determine the direct impact of microplastics during their contact with fish, we exposed goldfish (Carassius auratus) to 100 and 1000 items/L waterborne microplastic fibers in the short- and long-term. In the presence of 1000 items/L of microplastic fibers, the coughing behavior of fish increased significantly after 2 h of exposure. Predatory behaviors decreased significantly by 53.0% after 45 d of exposure, and the reduction in daily food intake was negatively related to exposure duration in the 1000 items/L group. In addition, microplastic fibers stimulated dynamic mucus secretion across different fish tissues during the different processes evaluated in this study, with 30.0% and 62.9% overall increases in the secretory capacity of mucus cells in the 100 and 1000 items/L groups, respectively. These behavioral and histological alterations were derived from the ventilation, feeding, and swimming processes of goldfish. We regarded these changes as process-oriented impacts, suggesting the effects of microplastics on fish and how fish cope with microplastics.
Collapse
Affiliation(s)
- Weiwenhui Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Bowen Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Cuizhu Ma
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Chencheng Zuo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
25
|
Brühl CA, Arias Andres M, Echeverría-Sáenz S, Bundschuh M, Knäbel A, Mena F, Petschick LL, Ruepert C, Stehle S. Pesticide use in banana plantations in Costa Rica - A review of environmental and human exposure, effects and potential risks. ENVIRONMENT INTERNATIONAL 2023; 174:107877. [PMID: 37030284 DOI: 10.1016/j.envint.2023.107877] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Biodiversity is declining on a global scale. Especially tropical ecosystems, containing most of the planetary biodiversity, are at risk. Agricultural monocrop systems contribute to this decline as they replace original habitats and depend on extensive use of synthetic pesticides that impact ecosystems. In this review we use large-scale banana production for export purposes in Costa Rica as an example for pesticide impacts, as it is in production for over a century and uses pesticides extensively for more than fifty years. We summarise the research on pesticide exposure, effects and risks for aquatic and terrestrial environment, as well as for human health. We show that exposure to pesticides is high and relatively well-studied for aquatic systems and humans, but hardly any data are available for the terrestrial compartment including adjacent non target ecosystems such as rainforest fragments. Ecological effects are demonstrated on an organismic level for various aquatic species and processes but are not available at the population and community level. For human health studies exposure evaluation is crucial and recognised effects include various types of cancer and neurobiological dysfunctions particularly in children. With the many synthetic pesticides involved in banana production, the focus on insecticides, revealing highest aquatic risks, and partly herbicides should be extended to fungicides, which are applied aerially over larger areas. The risk assessment and regulation of pesticides so far relies on temperate models and test species and is therefore likely underestimating the risk of pesticide use in tropical ecosystems, with crops such as banana. We highlight further research approaches to improve risk assessment and, in parallel, urge to follow other strategies to reduce pesticides use and especially hazardous substances.
Collapse
Affiliation(s)
- Carsten A Brühl
- Institute for Environmental Sciences (iES) Landau, RPTU University Kaiserslautern-Landau, Landau, Germany.
| | - Maria Arias Andres
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional (UNA), Heredia, Costa Rica
| | - Silvia Echeverría-Sáenz
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional (UNA), Heredia, Costa Rica
| | - Mirco Bundschuh
- Institute for Environmental Sciences (iES) Landau, RPTU University Kaiserslautern-Landau, Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Sweden
| | - Anja Knäbel
- Institute for Environmental Sciences (iES) Landau, RPTU University Kaiserslautern-Landau, Landau, Germany
| | - Freylan Mena
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional (UNA), Heredia, Costa Rica
| | - Lara L Petschick
- Institute for Environmental Sciences (iES) Landau, RPTU University Kaiserslautern-Landau, Landau, Germany
| | - Clemens Ruepert
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional (UNA), Heredia, Costa Rica
| | - Sebastian Stehle
- Institute for Environmental Sciences (iES) Landau, RPTU University Kaiserslautern-Landau, Landau, Germany
| |
Collapse
|
26
|
de Mello ME, França FM, Vieira E, Bach EE, Marcantônio AS, Ferreira CM. Atrazine contaminated sites and bullfrog tadpoles: evasive trends and biochemical consequences. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:344-356. [PMID: 36964299 DOI: 10.1007/s10646-023-02644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Atrazine (ATZ) is one of the most used active principles in agricultural systems. This pesticide has the ability to easily accumulate in terrestrial and aquatic environments, causing impacts with chronic adverse effects. Avoidance tests are tests that seek to assess the concentration from which a given organism escapes, that is, migrates to another habitat. They are being used as a modality of innovative and minimally invasive ecotoxicological tests. Our objective was to evaluate the sensitivity and possible toxic effects of ATZ in bullfrog tadpoles (Lithobates catesbeianus), through avoidance tests and oxidative stress analyses. We performed the behavioral avoidance test lasting 12 h, with observations every 60 min in a linear multi-compartment system with seven compartments. Each compartment corresponded to a concentration: negative control, 1, 2, 20, 200, 2000, 20,000 µg L-1. After the selection of habitat, organisms were forcedly maintained in the chosen concentrations for 48 h and then, metabolic effects were measured assessing the blood plasma amino acid profile and liver protein degradation. We also determined the effective concentrations of ATZ tested at 0 h and 48 h. The results showed that there was an effect of the treatment on the distribution of tadpoles, but not on the hours or on the combined effect (interaction). The biochemical analyses also showed a concentration-dependent relationship which caused significant toxic effects even in a short period of time. In conclusion, these frogs were able to avoid places with high concentrations of ATZ in the first hours of exposure, which suggests that in the natural environment these animals can migrate or avoid areas contaminated by this herbicide; however, depending on the selected concentration, serious biochemical consequences can occur.
Collapse
Affiliation(s)
| | | | - Eliane Vieira
- Biological Institute - APTA - SAA, São Paulo, SP, Brazil
| | - Erna E Bach
- Biological Institute - APTA - SAA, São Paulo, SP, Brazil
| | | | | |
Collapse
|
27
|
Alonso Á. Previous stress causes a contrasting response to cadmium toxicity in the aquatic snail Potamopyrgus antipodarum: lethal and behavioral endpoints. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41348-41358. [PMID: 36630038 PMCID: PMC10067653 DOI: 10.1007/s11356-022-24932-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
In aquatic ecosystems, animals are often exposed to a combination of stressors, including both natural and anthropogenic factors. Combined stressors may have additive or interactive effects on animals, either magnifying or reducing the effects caused by each stressor alone. Therefore, standardized bioassays can lead to overestimations or underestimations of the risk of toxicants if natural stressors are not bear in mind. The inclusion of natural stress in laboratory bioassays may help to extrapolate the laboratory results to ecosystems. This study assesses the effects of successive exposure to two sources of stress (high water conductivity and cadmium toxicity) on the behavior and survival of the aquatic snail Potamopyrgus antipodarum (Tateidae, Mollusca). I conducted a bioassay consisting on exposure to high conductivity (5000 mg NaCl/L, 7 days), followed by exposure to cadmium (0.03, 0.125, and 0.25 mg Cd/L for 7 days) and by a post-exposure period (7 days). Mortality, inactivity, and the time to start activity of active animals were monitored in each animal. In general, cadmium lethality was higher in animals previously undergoing high conductivity than in non-stressed ones. Previously stressed animals showed longer time to start activity, with a noticeable effect at the two highest cadmium concentrations. Animals submitted to the two highest cadmium concentration both, stressed and non-stressed, showed a moderate recovery during the post-exposure period. It is concluded that previous stress caused a worsening of the cadmium toxicity on the aquatic snail Potamopyrgus antipodarum, which is especially noticeable for mortality. However, there was no interactive effect between cadmium and conductivity on snail activity, which may be indicative of recovery after cadmium exposure regardless the previous stress suffered by the snails.
Collapse
Affiliation(s)
- Álvaro Alonso
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego S/N, Madrid, 28801, Alcalá de Henares, Spain.
| |
Collapse
|
28
|
Alonso Á. Post-exposure Period as a key Factor to Assess Cadmium Toxicity: Lethal vs. Behavioral Responses. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:41. [PMID: 36652007 PMCID: PMC9849298 DOI: 10.1007/s00128-022-03651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/09/2022] [Indexed: 06/17/2023]
Abstract
The exposure of animals to pollution in ecosystems is not always chronic. Toxicants can remain in aquatic ecosystems for a short-term. To improve the extrapolation of laboratory results to natural scenarios the inclusion of post-exposure periods is a relevant issue. The present study focuses on the assessment of cadmium toxicity on survival and behavior of the aquatic snail Potamopyrgus antipodarum (Tateidae, Mollusca) during exposure and post-exposure. Animals were exposed for 48 h to cadmium (0.05, 0.14, 0.44 and 1.34 mg Cd/L) and 168 h of post-exposure. During the post-exposure period an increase in mortality in all concentrations was observed. The effects observed during the post-exposure period on the LC50 and EC50 were significant. During the post-exposure, behavior showed a clear recovery in surviving animals exposed to 0.44 mg Cd/L. Animals exposed to 0.05 mg Cd/L did not show differences with control. Therefore, mortality after exposure should be included in the ecotoxicological bioassays for a more realistic estimation of the cadmium effects. To assess the degree of animal recovery after cadmium exposure, behaviour has been shown as an adequate parameter.
Collapse
Affiliation(s)
- Álvaro Alonso
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza San Diego s/n, 28801, Alcalá de Henares, Spain.
| |
Collapse
|
29
|
Gouveneaux A, Minet A, Jozet-Alves C, Knigge T, Bustamante P, Lacoue-Labarthe T, Bellanger C. Cuttlefish color change as an emerging proxy for ecotoxicology. Front Physiol 2023; 14:1162709. [PMID: 36969601 PMCID: PMC10030679 DOI: 10.3389/fphys.2023.1162709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Lately, behavioral ecotoxicology has flourished because of increasing standardization of analyses of endpoints like movement. However, research tends to focus on a few model species, which limits possibilities of extrapolating and predicting toxicological effects and adverse outcomes at the population and ecosystem level. In this regard, it is recommended to assess critical species-specific behavioral responses in taxa playing key roles in trophic food webs, such as cephalopods. These latter, known as masters of camouflage, display rapid physiological color changes to conceal themselves and adapt to their surrounding environments. The efficiency of this process depends on visual abilities and acuity, information processing, and control of chromatophores dynamics through nervous and hormonal regulation with which many contaminants can interfere. Therefore, the quantitative measurement of color change in cephalopod species could be developed as a powerful endpoint for toxicological risk assessment. Based on a wide body of research having assessed the effect of various environmental stressors (pharmaceutical residues, metals, carbon dioxide, anti-fouling agents) on the camouflage abilities of juvenile common cuttlefish, we discuss the relevance of this species as a toxicological model and address the challenge of color change quantification and standardization through a comparative review of the available measurement techniques.
Collapse
Affiliation(s)
- Anaïd Gouveneaux
- Ethologie Animale et Humaine (EthoS), UMR 6552 CNRS, Université Caen Normandie, Caen, France
- Stress Environnementaux et Biosurveillance des Milieux Aquatiques (SEBIO), UMR-I 02, Université Le Havre Normandie, Le Havre, France
| | - Antoine Minet
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Christelle Jozet-Alves
- Ethologie Animale et Humaine (EthoS), UMR 6552 CNRS, Université Caen Normandie, Caen, France
| | - Thomas Knigge
- Stress Environnementaux et Biosurveillance des Milieux Aquatiques (SEBIO), UMR-I 02, Université Le Havre Normandie, Le Havre, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Thomas Lacoue-Labarthe
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Cécile Bellanger
- Ethologie Animale et Humaine (EthoS), UMR 6552 CNRS, Université Caen Normandie, Caen, France
- *Correspondence: Cécile Bellanger,
| |
Collapse
|
30
|
Saha S, Chukwuka AV, Mukherjee D, Dhara K, Saha NC, Faggio C. Behavioral and physiological toxicity thresholds of a freshwater vertebrate (Heteropneustes fossilis) and invertebrate (Branchiura sowerbyi), exposed to zinc oxide nanoparticles (nZnO): A General Unified Threshold model of Survival (GUTS). Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109450. [PMID: 36058464 DOI: 10.1016/j.cbpc.2022.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
Abstract
The toxic effects of Zinc oxide nanoparticles (nZnO) on Branchiura sowerbyi and Heteropneustes fossilis, was assessed in a 96-hour acute exposure regime using behavioral (including loss-of balance and clumping tendencies) and physiological (mucus secretion and oxygen consumption) endpoints. While the relationship between behavioral, physiological biomarkers, and exposure concentrations was assessed using correlation analysis, nZnO toxicity was further predicted using the General Unified Threshold model for Survival (GUTS). The time-dependent lethal limits for acute nZnO toxicity (LC50) on B. sowerbyi were estimated to be 0.668, 0.588, 0.448, and 0.400 mg/l, respectively, at 24, 48, 72, and 96 h whereas for H. fossilis the LC50 values are 0.954, 0.905, 0.874 and 0.838 mg/l. Threshold effect values i.e., LOEC (Lowest Observed Effect Concentration), NOEC (No Observed Effect Concentration), and MATC (Maximum Acceptable Toxicant Concentration) threshold effect values at 96 h were higher for fish compared to the oligochaete. For B. sowerbyi, the GUTS-SD (stochastic death) model is a better predictor of nanoparticle exposure effects compared to the GUTS-IT (individual tolerance) model, however in the case of H. fossilis, the reverse pattern was observed. Oxygen consumption rate was negatively correlated to mortality under acute exposure duration. The strong negative correlation between mortality and oxygen consumption strongly suggests a metabolic-toxicity pathway for nZnO exposure effects. The higher toxicity threshold values i.e., LOEC, NOEC, and MATC for fish compared to the oligochaete invertebrate indicates greater risks for invertebrates compared to vertebrates, with resultant implications for local habitat trophic relationships.
Collapse
Affiliation(s)
- Shubhajit Saha
- Department of Zoology, Sundarban Hazi Desarat College, South 24, Parganas 743 611, West Bengal, India. https://twitter.com/@DrShubhajitS
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Nigeria
| | - Dip Mukherjee
- Department of Zoology, S.B.S. Government College, Hili, Dakshin Dinajpur 733126, India
| | - Kishore Dhara
- Freshwater Fisheries Research & Training Centre, Directorate of Fisheries, Kalyani, Nadia 741 251, India
| | - Nimai Chandra Saha
- Department of Zoology, University of Burdwan, Purba Barddhaman 713 104, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
31
|
Puddephatt KJ, McCarthy LH, Serre BM. Assessing the potential chronic, sublethal and lethal ecotoxicity of land-applying biosolids on Folsomia candida and Lumbricus terrestris. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1520-1535. [PMID: 36454360 DOI: 10.1007/s10646-022-02606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The ecotoxicity of biosolids has been studied extensively using single-compound toxicity testing and 'spiking' studies; however, little knowledge exists on the ecotoxicity of biosolids as they are land-applied in the Canadian context. The purpose of this study is to elucidate the chronic, sub-lethal (i.e., behavioural), and lethal impacts of land- applying biosolids on the environmentally relevant Folsomia candida (springtails) and Lumbricus terrestris (earthworms) and concomitantly ascertain whether the use of biosolids for nutrient amendment is a sustainable practice. This study is part of a larger multi-compartment programme which includes terrestrial plants and aquatic arthropods. After a review of existing government protocols and research, the current study suggests new environmentally relevant bioassays as to elucidate the true nature of the potential ecotoxicity of land-applying biosolids, within a laboratory context. Specifically, protocols were developed (e.g., shoebox bioassays for L. terrestris sub-lethal testing) or modified (e.g., using Evans' boxes (Evans 1947) for chronic and sub-lethal testing on L. terrestris). Subsequently, two biosolids were tested on springtails and earthworms using avoidance and reproductive bioassay endpoints, at application rates that represent standard (8 tonnes ha-1) and worst-case scenarios (22 tonnes ha-1). Results indicated no effect of biosolids at the environmentally relevant concentration; the worst-case scenario exhibited a positive significantly significant relationship (indicating preference for treatment conditions). We suggest that further assessment of the potential ecotoxicological impact of biosolids employ (i) environmentally relevant organisms, (ii) appropriate bioassays including the use of whole-organism endpoints, and (iii) multi-kingdom testing (e.g., Kingdom Plantae, Animalia) to comprehensively elucidate answers. Lastly, in situ (field assays) are strongly encouraged for future studies.
Collapse
Affiliation(s)
| | | | - Bryant M Serre
- Natural Resource Sciences, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
32
|
Coy CO, Steele AN, Abdulelah SA, Belanger RM, Crile KG, Stevenson LM, Moore PA. Differing behavioral changes in crayfish and bluegill under short- and long-chain PFAS exposures: Field study in Northern Michigan, USA. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114212. [PMID: 36274321 DOI: 10.1016/j.ecoenv.2022.114212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The emergent contaminant family, per- and poly-fluorinated alkyl substances (PFAS) has gained research attention due to their widespread detection and stability within the environment. Despite the growing amount of research on perfluorooctanesulfonic acid (PFOS) and perfluoro-n-octanoic acid (PFOA) in aquatic organisms, investigations detailing behavioral and physiological effects of aquatic organisms exposed to a mixture of PFAS analytes in the wild have been limited. The objective of this study was to evaluate the potential behavioral and histological effects of environmental exposure to PFAS compounds within multiple trophic levels of aquatic ecosystems. The current study investigates effects of environmentally relevant PFAS concentration exposures in crayfish (Faxonius immunis, F. rusticus, F. virilis) and bluegill (Lepomis macrochirus) sourced from four water bodies in Northern Michigan. Antipredator response and foraging behavioral assays were used to investigate potential effects on crayfish; a swimming speed behavioral assay and liver and gill histology analysis were used to investigate potential effects on fish. Linear mixed model and multiple regression analyses resulted in significant relationships between tissue accumulation levels of long chain PFAS compounds and crayfish foraging and fish critical swimming speed responses. Crayfish foraging decreased and fish critical swim speeds increased with PFAS exposure which may lead to energetic and population concerns. Antipredator response in crayfish and liver and gill histology in fish were not significantly related to PFAS tissue or water concentrations. The sensitivity of crayfish and bluegill behavior contributes to the growing body of research regarding the differential toxicity of short-chain and long-chain PFAS compounds. The sensitivity of some aquatic organism behaviors to PFAS accumulated in tissue may have implications for PFAS transfer and alterations to ecosystem functioning; based on the results of this field study, further laboratory research is recommended to further evaluate these relationships.
Collapse
Affiliation(s)
- Carrie O Coy
- Laboratory for Sensory Ecology, Bowling Green State University, Department of Biological Sciences, 226 Life Sciences Building, Bowling Green, OH 43403, USA; University of Michigan Biological Station, 9133 Biological Road, Pellston, MI 49769, USA.
| | | | - Sara A Abdulelah
- Biology Department, University of Detroit Mercy, 4001 W. McNichols Road, Detroit, MI 48221, USA.
| | - Rachelle M Belanger
- Biology Department, University of Detroit Mercy, 4001 W. McNichols Road, Detroit, MI 48221, USA.
| | - Karen G Crile
- Biology Department, University of Detroit Mercy, 4001 W. McNichols Road, Detroit, MI 48221, USA.
| | - Louise M Stevenson
- Biodiversity and Ecosystem Health Group, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA; Department of Biological Sciences, Bowling Green State University, 217 Life Sciences Building, Bowling Green, OH 43403, USA.
| | - Paul A Moore
- Laboratory for Sensory Ecology, Bowling Green State University, Department of Biological Sciences, 226 Life Sciences Building, Bowling Green, OH 43403, USA; University of Michigan Biological Station, 9133 Biological Road, Pellston, MI 49769, USA.
| |
Collapse
|
33
|
Schumann PG, Meade EB, Zhi H, LeFevre GH, Kolpin DW, Meppelink SM, Iwanowicz LR, Lane RF, Schmoldt A, Mueller O, Klaper RD. RNA-seq reveals potential gene biomarkers in fathead minnows ( Pimephales promelas) for exposure to treated wastewater effluent. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1708-1724. [PMID: 35938375 DOI: 10.1039/d2em00222a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Discharged wastewater treatment plant (WWTP) effluent greatly contributes to the generation of complex mixtures of contaminants of emerging concern (CECs) in aquatic environments which often contain neuropharmaceuticals and other emerging contaminants that may impact neurological function. However, there is a paucity of knowledge on the neurological impacts of these exposures to aquatic organisms. In this study, caged fathead minnows (Pimephales promelas) were exposed in situ in a temperate-region effluent-dominated stream (i.e., Muddy Creek) in Coralville, Iowa, USA upstream and downstream of a WWTP effluent outfall. The pharmaceutical composition of Muddy Creek was recently characterized by our team and revealed many compounds there were at a low microgram to high nanogram per liter concentration. Total RNA sequencing analysis on brain tissues revealed 280 gene isoforms that were significantly differentially expressed in male fish and 293 gene isoforms in female fish between the upstream and downstream site. Only 66 (13%) of such gene isoforms overlapped amongst male and female fish, demonstrating sex-dependent impacts on neuronal gene expression. By using a systems biology approach paired with functional enrichment analyses, we identified several potential novel gene biomarkers for treated effluent exposure that could be used to expand monitoring of environmental effects with respect to complex CEC mixtures. Lastly, when comparing the results of this study to those that relied on a single-compound approach, there was relatively little overlap in terms of gene-specific effects. This discovery brings into question the application of single-compound exposures in accurately characterizing environmental risks of complex mixtures and for gene biomarker identification.
Collapse
Affiliation(s)
| | - Emma B Meade
- University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
| | - Hui Zhi
- University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | - Olaf Mueller
- Great Lakes Genomics Center, Milwaukee, Wisconsin, USA
| | - Rebecca D Klaper
- University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
- Great Lakes Genomics Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
34
|
Alonso Á, Romero-Blanco A. Same sensitivity with shorter exposure: behavior as an appropriate parameter to assess metal toxicity. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1254-1265. [PMID: 36114325 PMCID: PMC9529696 DOI: 10.1007/s10646-022-02584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The exposure of animals to toxicants may cause a depletion in the energy uptake, which compromises reproduction and growth. Although both parameters are ecologically relevant, they usually need long-term bioassays. This is a handicap for the availability of toxicological data for environmental risk assessment. Short-term bioassays conducted with environmental concentrations, and using relevant ecological parameters sensitive to short-term exposures, such as behavior, could be a good alternative. Therefore, to include this parameter in the risk assessment procedures, it is relevant the comparison of its sensitivity with that of growth and reproduction bioassays. The study aim was the assessment of differences between endpoints based on mortality, behaviour, reproduction, and growth for the toxicity of metals on aquatic animals. We used the ECOTOX database to gather data to construct chemical toxicity distribution (CTD) curves. The mean concentrations, the mean exposure time, and the ratio between the mean concentration and the exposure time were compared among endpoints. Our results showed that behavioral, growth, and reproduction bioassays presented similar sensitivity. The shortest exposure was found in behavioral and reproduction bioassays. In general, the amount of toxicant used per time was lower in growth and reproduction bioassays than in behavioral and mortality bioassays. We can conclude that, for metal toxicity, behavioral bioassays are less time-consuming than growth bioassays. As the sensitivity of behavior was similar to that of growth and reproduction, this endpoint could be a better alternative to longer bioassays.
Collapse
Affiliation(s)
- Álvaro Alonso
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad de Ecología, Research Group in Biological Invasions, Campus Científico Tecnológico, Alcalá de Henares, 28805, Madrid, Spain.
| | - Alberto Romero-Blanco
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad de Ecología, Research Group in Biological Invasions, Campus Científico Tecnológico, Alcalá de Henares, 28805, Madrid, Spain
| |
Collapse
|
35
|
Pontes JRS, Lopes I, Ribeiro R, Araújo CVM. Humane acute testing with tadpoles for risk assessment of chemicals: Avoidance instead of lethality. CHEMOSPHERE 2022; 303:135197. [PMID: 35691390 DOI: 10.1016/j.chemosphere.2022.135197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In spite of the sensitivity of amphibians to contamination, data from fish have been commonly used to predict the effects of chemicals on aquatic life stages. However, recent studies have highlighted that toxicity data derived from fish species may not protect all the aquatic life stages of amphibians. For pesticide toxicity assessment (PTA), EFSA has highlighted that more information on lethal toxicity for the aquatic life stages of amphibians is still needed to reduce uncertainties. The current review aims to propose a test with amphibians based on spatial avoidance, as a more humane alternative method to the lethality tests for chemicals. A review of lethal toxicity tests carried out with amphibians in the period between 2018 and 2021 is presented, then we discuss the suitability of using fish toxicity data as a surrogate to predict the effects on more sensitive amphibian groups. The possible differences in sensitivity to chemicals may justify the need to develop further tests with amphibian embryos and larvae in order to reduce uncertainties. A new test is proposed focused on the avoidance behaviour of organisms fleeing from contamination to replace lethal tests. As avoidance indicates the threshold at which organisms will flee from contamination, a reduction in the population density, or its disappearance, at the local scale due to emigration is expected, with ecological consequences analogous to mortality. Avoidance tests provide an ethical advantage over lethal tests as they respect the concepts of the 3 Rs (mainly Refinement), reducing the suffering of the organisms.
Collapse
Affiliation(s)
- João Rodolfo S Pontes
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Isabel Lopes
- Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Ribeiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
36
|
Fu CW, Horng JL, Chou MY. Fish Behavior as a Neural Proxy to Reveal Physiological States. Front Physiol 2022; 13:937432. [PMID: 35910555 PMCID: PMC9326089 DOI: 10.3389/fphys.2022.937432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Behaviors are the integrative outcomes of the nervous system, which senses and responds to the internal physiological status and external stimuli. Teleosts are aquatic organisms which are more easily affected by the surrounding environment compared to terrestrial animals. To date, behavioral tests have been widely used to assess potential environmental risks using fish as model animals. In this review, we summarized recent studies regarding the effects of internal and external stimuli on fish behaviors. We concluded that behaviors reflect environmental and physiological changes, which have possible implications for environmental and physiological assessments.
Collapse
Affiliation(s)
- Chih-Wei Fu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- *Correspondence: Ming-Yi Chou,
| |
Collapse
|
37
|
Wlodkowic D, Bownik A, Leitner C, Stengel D, Braunbeck T. Beyond the behavioural phenotype: Uncovering mechanistic foundations in aquatic eco-neurotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154584. [PMID: 35306067 DOI: 10.1016/j.scitotenv.2022.154584] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
During the last decade, there has been an increase in awareness of how anthropogenic pollution can alter behavioural traits of diverse aquatic organisms. Apart from understanding profound ecological implications, alterations in neuro-behavioural indices have emerged as sensitive and physiologically integrative endpoints in chemical risk assessment. Accordingly, behavioural ecotoxicology and broader eco-neurotoxicology are becoming increasingly popular fields of research that span a plethora of fundamental laboratory experimentations as well as applied field-based studies. Despite mounting interest in aquatic behavioural ecotoxicology studies, there is, however, a considerable paucity in deciphering the mechanistic foundations underlying behavioural alterations upon exposure to pollutants. The behavioural phenotype is indeed the highest-level integrative neurobiological phenomenon, but at its core lie myriads of intertwined biochemical, cellular, and physiological processes. Therefore, the mechanisms that underlie changes in behavioural phenotypes can stem among others from dysregulation of neurotransmitter pathways, electrical signalling, and cell death of discrete cell populations in the central and peripheral nervous systems. They can, however, also be a result of toxicity to sensory organs and even metabolic dysfunctions. In this critical review, we outline why behavioural phenotyping should be the starting point that leads to actual discovery of fundamental mechanisms underlying actions of neurotoxic and neuromodulating contaminants. We highlight potential applications of the currently existing and emerging neurobiology and neurophysiology analytical strategies that should be embraced and more broadly adopted in behavioural ecotoxicology. Such strategies can provide new mechanistic discoveries instead of only observing the end sum phenotypic effects.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Australia.
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | - Carola Leitner
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Daniel Stengel
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| |
Collapse
|
38
|
Momtazi F, Maghsoudlou A. Response of marine amphipods to sediment variables (Chabahar Bay- Iran): A step toward localizing amphipod-based bioindices. MARINE ENVIRONMENTAL RESEARCH 2022; 178:105648. [PMID: 35597047 DOI: 10.1016/j.marenvres.2022.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Chabahar Bay will undergo industrial and coastal pressures according to the government plan to develop the Makran coasts. Therefore, knowing its biological community as well as their possible interactions with environmental variables, before and after coastal development, is important. The amphipod community structure and their response to the structural and contaminant parameters of the sediment include: granulometry, total organic matter (TOM) overloading, heavy metal contamination based on the Pollution Load Index (PLI) and polycyclic aromatic hydrocarbons (PAHs) during post monsoon season of 2017 were investigated from 19 stations. Traditional diversity and taxonomic distinctness indices were calculated. Multivariate analysis revealed the main role of sediment grain size and depth in shaping amphipod community structure. Consequently, two specific ecological niches were determined: species that prefer non-muddy substrates; and those dwelling in muddy or muddy sandy biotopes. No correlation was found between the Shannon diversity (H'), the average taxonomic distinctness indices (Δ+) together and both with contamination parameters. The Δ+ funnel plot well separated under-stressed stations from the healthy ones. The presence of only Ampelisca congeners in under-stressed stations revealed the tolerant nature as well as species-specific response of the genus to anthropogenic impacts. Considerable tolerant response (P > 0.05, r2 = 0.4) of A. zamboangae to PAHs; A. persicus to TOM were observed. High concentration of nickel (Ni) in the studied area already stated due to erosion of ophiolite units from Makran Mountains. The significant correlation of the recently described Iranian species A. lowryi with Ni assumes that it is a native species that is well adapted to the geological conditions of the seabed. Instead Urothoe platydactyla can be considered as early warning signal for PAHs, TOM, Ni and cadmium (Cd) contamination particularly for non-muddy substrates. Our findings help to localize common biotic indices (e.g. AMBI, BENTIX, and BOPA) for studied area through correctly assignment of amphipods to the sensitive/tolerant ecological groups. Finally, we state that in the current situation of Chabahar Bay, in which no special industrial complexes have been established, any sediment-disrupting activity (i.e. sedimentation, dredging, trawling) affects its amphipod communities more than chemical pollutants.
Collapse
Affiliation(s)
- Farzaneh Momtazi
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Marine Bioscience Dept, Tehran, P.O.BOX:1411813389, Iran
| | - Abdolvahab Maghsoudlou
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Marine Bioscience Dept, Tehran, P.O.BOX:1411813389, Iran.
| |
Collapse
|
39
|
Qiu X, Liu L, Xu W, Chen C, Li M, Shi Y, Wu X, Chen K, Wang C. Zeolitic Imidazolate Framework-8 Nanoparticles Exhibit More Severe Toxicity to the Embryo/Larvae of Zebrafish ( Danio rerio) When Co-Exposed with Cetylpyridinium Chloride. Antioxidants (Basel) 2022; 11:945. [PMID: 35624808 PMCID: PMC9138101 DOI: 10.3390/antiox11050945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
The combined application of nanoparticles and surfactants has attracted tremendous attention in basic research and industry. However, knowledge of their combined toxicity remains scarce. In this study, we exposed zebrafish embryos to cetylpyridinium chloride (CPC, a cationic surfactant, at 0 and 20 μg/L), zeolitic imidazolate framework nanoparticles (ZIF-NPs, at 0, 30, and 60 mg/L), and their mixtures until 120 h post-fertilization (hpf). Within the used concentration range, both single and combined exposures exhibited limited effects on the survival and hatching of zebrafish. However, the combined exposure of ZIF-NPs and CPC caused more severe effects on the heart rate at both 48 and 72 hpf. The combined exposure also induced significant hyperactivity (i.e., increasing the average swimming velocity) and oxidative stress in zebrafish larvae (at 120 hpf), although all single exposure treatments exhibited limited impacts. Furthermore, the level of reactive oxygen species (or malondialdehyde) exhibited a significantly positive correlation with the heart rate (or average swimming velocity) of zebrafish, suggesting that oxidative stress plays a role in mediating the combined toxicity of CPC and ZIF-NPs to zebrafish. Our findings suggest that the interaction of CPC and ZIF-NPs should not be ignored when assessing the potential risks of their mixtures.
Collapse
Affiliation(s)
- Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lei Liu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Wei Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Ming Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Chongchen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
40
|
Tomasello DL, Wlodkowic D. Noninvasive Electrophysiology: Emerging Prospects in Aquatic Neurotoxicity Testing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4788-4794. [PMID: 35196004 DOI: 10.1021/acs.est.1c08471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The significance of neurotoxicological risks associated with anthropogenic pollution is gaining increasing recognition worldwide. In this regard, perturbations in behavioral traits upon exposure to environmentally relevant concentrations of neurotoxic and neuro-modulating contaminants have been linked to diminished ecological fitness of many aquatic species. Despite an increasing interest in behavioral testing in aquatic ecotoxicology there is, however, a notable gap in understanding of the neurophysiological foundations responsible for the altered behavioral phenotypes. One of the canonical approaches to explain the mechanisms of neuro-behavioral changes is functional analysis of neuronal transmission. In aquatic animals it requires, however, invasive, complex, and time-consuming electrophysiology techniques. In this perspective, we highlight emerging prospects of noninvasive, in situ electrophysiology based on multielectrode arrays (MEAs). This technology has only recently been pioneered for the detection and analysis of transient electrical signals in the central nervous system of small model organisms such as zebrafish. The analysis resembles electroencephalography (EEG) applications and provides an appealing strategy for mechanistic explorative studies as well as routine neurotoxicity risk assessment. We outline the prospective future applications and existing challenges of this emerging analytical strategy that is poised to bring new vistas for aquatic ecotoxicology such as greater mechanistic understanding of eco-neurotoxicity and thus more robust risk assessment protocols.
Collapse
Affiliation(s)
- Danielle L Tomasello
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, Victoria 3083, Australia
| |
Collapse
|
41
|
Tsotesti PAA, Mazibuko SS, Nyoka NWK, Mnkandla SM, Fouché T, Otomo PV. Behavioural changes and flight response of a mosquito (Culicidae) and an earthworm (Lumbricidae), respectively, after exposure to imidacloprid. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:367-375. [PMID: 35001259 DOI: 10.1007/s10646-021-02513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
A major point of concern in ecotoxicology is the effects of pesticides on nontarget organisms. This can impact the ecological role played by certain beneficial species in nature. Regarding neonicotinoid insecticides such as imidacloprid (IMI), several measures, including limited trade, restrictive use, and ban have been implemented in Europe and the USA but not globally. The goal of our study was to evaluate the potential risk of this still widely used agrochemical on the behaviour of mosquito larvae (Culicidae) and the escape behaviour of earthworms (Lumbricidae). Changes in breathing, swimming and resting were recorded in mosquitoes postexposure to 0, 1 and 2 mg IMI/L for 10 min. Earthworms were topically exposed in water for 2 minutes to 0, 5, 10 and 20 mg IMI/L. The escape behaviour (initial escape distance and speed) of the earthworms were recorded. In culicids, resting particularly was significantly increased by the exposure to imidacloprid (p < 0.05). In earthworms, the initial escape distance was statistically longer (p < 0.05) when fleeing from the 5 mg IMI/L solution than the solutions with the two highest concentrations. The worms exposed to the 5 mg IMI/L reacted faster than those exposed to the higher concentrations, which explained the long distance covered in the same amount of time. These results point to the relatively quick onset of the neurotoxic effects of imidacloprid, crippling earthworms and altering the buoyancy of mosquito larvae. The ecological consequences of these findings on the completion of life cycles and the survival of these species in nature are yet to be established.
Collapse
Affiliation(s)
- Palesa Andile Adrena Tsotesti
- Ecotoxicology Research Group, Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, QwaQwa, South Africa
| | - Simangele Sandra Mazibuko
- Ecotoxicology Research Group, Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, QwaQwa, South Africa
- Department of Environmental Science, University of South Africa, Florida, South Africa
| | - Ngitheni Winnie-Kate Nyoka
- Ecotoxicology Research Group, Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, QwaQwa, South Africa.
- Afromontane Research Unit, Phuthaditjhaba, Free State, Republic of South Africa.
| | - Sanele Michelle Mnkandla
- Ecotoxicology Research Group, Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, QwaQwa, South Africa
- Ecotoxicology Research Group, Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Tanya Fouché
- Department of Environmental Science, University of South Africa, Florida, South Africa
| | - Patricks Voua Otomo
- Ecotoxicology Research Group, Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, QwaQwa, South Africa
- Afromontane Research Unit, Phuthaditjhaba, Free State, Republic of South Africa
| |
Collapse
|
42
|
Alonso Á, Gómez-de-Prado G, Romero-Blanco A. Behavioral Variables to Assess the Toxicity of Unionized Ammonia in Aquatic Snails: Integrating Movement and Feeding Parameters. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:429-438. [PMID: 35332359 PMCID: PMC8971178 DOI: 10.1007/s00244-022-00920-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Behavioral endpoints are important parameters to assess the effects of toxicants on aquatic animals. These endpoints are useful in ecotoxicology because several toxicants modify the animal behavior, which may cause adverse effects at higher levels of ecological organization. However, for the development of new bioassays and for including the behavior in ecotoxicological risk assessment, the comparison of sensitivity between different behavioral endpoints is necessary. Additionally, some toxicants remain in aquatic environments for a few hours or days, which may lead to animal recovery after toxicant exposure. Our study aimed to assess the effect of unionized ammonia on the movement and feeding behaviors of the aquatic gastropod Potamopyrgus antipodarum (Tateidae, Mollusca) and its recovery after exposure. Four treatments were used: a control and three nominal concentrations of unionized ammonia (0.25, 0.5 and 1 mg N-NH3/L). Each treatment was replicated eight times, with six animals in each replicate. Animals were exposed to unionized ammonia for 48 h (exposure period) and, subsequently, to control water for 144 h (post-exposure period). Two movement variables were monitored without food and five feeding behavioral variables were monitored in the presence of food. Some of the feeding behavioral variables showed higher sensitivity (LOEC = 0.25-0.5 mg N-NH3/L) than the movement behavior variables monitored without food (LOEC = 1 mg N-NH3/L). After exposure to unionized ammonia, animals showed a recovery of most behavioral endpoints. The inclusion of post-exposure period and feeding behaviors in bioassays may make studies more realistic, which is crucial for a proper ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Álvaro Alonso
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego S/N, 28801, Alcalá de Henares, Madrid, Spain.
| | - Gloria Gómez-de-Prado
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego S/N, 28801, Alcalá de Henares, Madrid, Spain
| | - Alberto Romero-Blanco
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego S/N, 28801, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
43
|
Fluoxetine-induced neurotoxicity at environmentally relevant concentrations in adult zebrafish Danio rerio. Neurotoxicology 2022; 90:121-129. [PMID: 35304135 DOI: 10.1016/j.neuro.2022.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/08/2021] [Accepted: 03/14/2022] [Indexed: 01/21/2023]
Abstract
Fluoxetine (FLX) exerts its therapeutic effect by inhibiting the presynaptic reuptake of the neurotransmitter serotonin. Nonetheless, at high concentrations of this drug, adverse effects occur in the brain of exposed organisms. Bearing this into account, the objective of this study was to evaluate the neurotoxic effects of the fluoxetine through the evaluation of behavior (Novel tank test), determination of oxidative stress, and determination of acetylcholinesterase (AChE) activity in adult zebrafish Danio rerio. For this purpose, Danio rerio adults were exposed to three environmentally relevant concentrations (5, 10, 16ngL-1) of FLX for 96h. Our results demonstrate fish presented a significant disruption in their behavior, as they remained long-lasting time frozen at the top of the tank. Since we observed a significant reduction of AChE activity in the brain of fish, we believe the above described anxiety-like state is the result of this enzyme impairment. Moreover, as FLX-exposed fish showed a significant increase in the levels of oxidative damage biomarkers, we suggest this AChE disruption is associated with the oxidative stress response fish exhibited. Based on our findings, we believe the environmentally relevant concentration of FLX alters the redox status of the brain, impairing this way the behavior of fish and making them more vulnerable to predation.
Collapse
|
44
|
Cozzola AJ, Dehnert GK, White AM, Karasov WH. Effects of subchronic exposure to environmentally relevant concentrations of a commercial fluridone formulation on fathead minnows (Pimephales promelas). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106098. [PMID: 35121564 DOI: 10.1016/j.aquatox.2022.106098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Invasive aquatic plants are a widespread problem in United States' waterways, and aquatic herbicide treatments are a common tool used in their management. Fluridone is an active ingredient in aquatic herbicides used globally to control aquatic plants. In order to be effective, fluridone requires a long contact time with plants resulting in extended exposure to non-target organisms. While there has been limited studies exploring the effects of fluridone on non-target aquatic organisms, the effects of subchronic commercial fluridone exposure at concentrations representative of operational use rates for plant management on fish are poorly understood. Therefore, we conducted a series of three exposure experiments using environmentally relevant concentrations on different life stages of the fathead minnow (Pimephales promelas). We exposed fathead minnows to a commercial fluridone formulation, Spritflo®, at environmentally relevant concentrations of 0.00, 3.00, 12.00, 25.00, and 100.00 μg/L. Exposure times included subchronic periods up to 35 days and a trans-generation exposure of 65 days, which is a likely residence time of fluridone when applied for plant management. Following 30 days of fluridone exposure, adult male fish had an increased presence of nuptial tubercules, an indicator of endocrine disruption, and an enlarged liver compared to the control. Additionally, we conducted larval fish behavior experiments and found fluridone exposure negatively affected prey capture ability, locomotion, and position preference. Our findings suggest fluridone treatment concentrations used in aquatic plant management do not directly cause mortality in fathead minnows, though sub-lethal effects observed could cause a decline in biological fitness and pose potential ecological implications.
Collapse
Affiliation(s)
- Angelo J Cozzola
- Department of Integrative Biology University of Wisconsin - Madison, Madison, WI, United States.
| | - Gavin K Dehnert
- Department of Integrative Biology University of Wisconsin - Madison, Madison, WI, United States
| | - Amber M White
- Department of Civil and Environmental Engineering University of Wisconsin - Madison, Madison, WI, United States
| | - William H Karasov
- Department of Forest and Wildlife Ecology University of Wisconsin - Madison, Madison, WI, United States
| |
Collapse
|
45
|
Henry J, Bai Y, Williams D, Logozzo A, Ford A, Wlodkowic D. Impact of test chamber design on spontaneous behavioral responses of model crustacean zooplankton Artemia franciscana. Lab Anim (NY) 2022; 51:81-88. [PMID: 35115724 DOI: 10.1038/s41684-021-00908-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Abstract
The use of small aquatic model organisms to investigate the behavioral effects of chemical exposure is becoming an integral component of aquatic ecotoxicology research and neuroactive drug discovery. Despite the increasing use of invertebrates for behavioral phenotyping in toxicological studies and chemical risk assessments, little is known regarding the potential for environmental factors-such as geometry, size, opacity and depth of test chambers-to modulate common behavioral responses. In this work, we demonstrate that test chamber geometry, size, opacity and depth can affect spontaneous, unstimulated behavioral responses of euryhaline crustacean Artemia franciscana first instar larval stages. We found that in the absence of any obvious directional cues, A. franciscana exhibited a strong innate wall preference behavior. Using different test chamber sizes and geometries, we found both increased wall preference and lowered overall distance traveled by the test shrimp in a smaller chamber with sharper-angled vertices. It was also determined through quantifiable changes in the chambers' color that the A. franciscana early larval stages can perceive, differentiate and react to differences in color or perhaps rather to light transmittance of the test chambers. The interaction between innate edge preference and positive phototaxis could be consistently altered with a novel photic stimulus system. We also observed a strong initial preference for depth in A. franciscana first instar larval stages, which diminished through the acclimatization. We postulate that the impact of test chamber designs on neurobehavioral baseline responses warrants further investigation, in particular considering the increased interest in behavioral eco-neurotoxicology applications.
Collapse
Affiliation(s)
- Jason Henry
- The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Yutao Bai
- The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Daniel Williams
- The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Adrian Logozzo
- The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Alex Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Donald Wlodkowic
- The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Victoria, Australia.
| |
Collapse
|
46
|
Liu Y, Wang Y, Li N, Jiang S. Avobenzone and nanoplastics affect the development of zebrafish nervous system and retinal system and inhibit their locomotor behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150681. [PMID: 34599957 DOI: 10.1016/j.scitotenv.2021.150681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/08/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The use of cosmetics is growing with each passing day, arousing widespread attention to their ingredients. Avobenzone (AVO) and nanoplastics (NPs) are typical ingredients in cosmetics, which coexist in the aquatic environment and have a combined effect on aquatic organisms. In this study, the accumulation of AVO and NPs in zebrafish larvae and effects on gene expression and enzymatic activity related to nervous functions, and locomotor behavior were investigated. AVO and NPs accumulated continuously in zebrafish, and the combined exposure enhanced AVO accumulation. After recovery, the accumulated concentrations of AVO and NPs in zebrafish remained unchanged, suggesting that AVO and NPs could not be eliminated in 72 h. The genes regulated nervous system development were affected mainly by AVO exposure, while the genes regulated retinal system development were affected by NPs exposure. Single and combined exposures of AVO and NPs affected the activities of acetylcholinesterase and antioxidant enzymes in zebrafish, and superoxide dismutase activity could not return to normal level after 72 h of recovery period. The locomotor activity of zebrafish larvae was significantly inhibited by AVO and NPs, which might be related to the alterations in functions of nervous system development and retinal system development as well as the interference of neurotransmitter system and antioxidant system.
Collapse
Affiliation(s)
- Yuxuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Na Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Shengnan Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
47
|
Cuenca ALR, Simonato JD, Meletti PC. Acute exposure of embryo, larvae and adults of Danio rerio to fipronil commercial formulation reveals effects on development and motor control. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:114-123. [PMID: 34748160 DOI: 10.1007/s10646-021-02497-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The insecticide fipronil, one of the main pesticides used in Brazil, is often detected in natural aquatic environments, and causes neuronal hyperexcitation by inhibiting GABAergic neurotransmission, leading to putative alterations in behaviour and development. This work sought to analyse the toxicity of formulated Regent® 800WG (80% fipronil) on development (fish embryo toxicity test, FET), morphology, and swimming behaviour of larvae and adults of zebrafish (Danio rerio). FET was performed following OECD236 guidelines at concentrations ranging from 0.002 to 1600 μg.L-1 of formulated Regent® 800WG. Adults were exposed to 0.2, 2 and 20 μg.L-1 of the product for 24 and 96 h, and were submitted to the light-dark, novel tank and swimming endurance tests No lethal parameters were observed in larvae, but in concentrations above 400 µg.L-1, there was shortening of the body axis and decreased swimming behavior. In adults, exposure to the pesticide did not lead to changes in free swimming parameters. However, a marked decrease of swimming endurance was observed at all experimental treatments, although probably not in consequence of energetic depletion, since baseline blood glucose levels and condition factor were similar at all conditions. Furthermore, zebrafish adults did not show their natural preference for the dark environment. The pesticide likely has anxiolytic effects on zebrafish, as well as a compromising effect on locomotor control, illustrating that behavioural changes, which could affect activities on the natural environment, such as escape and predation, may occur even in environmentally relevant concentrations of this pollutant.
Collapse
Affiliation(s)
- André L R Cuenca
- Programa de Pós-Graduação em Zoologia, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná - Centro Politécnico, 81530-000, Curitiba, PR, Brazil.
| | - Juliana D Simonato
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, PR, Brazil
| | - Paulo C Meletti
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, 86057-970, Londrina, PR, Brazil
| |
Collapse
|
48
|
Wolmarans NJ, Bervoets L, Meire P, Wepener V. Sub-lethal exposure to malaria vector control pesticides causes alterations in liver metabolomics and behaviour of the African clawed frog (Xenopus laevis). Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109173. [PMID: 34492387 DOI: 10.1016/j.cbpc.2021.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 11/19/2022]
Abstract
In this study we explore the sub-lethal effects of two malaria vector control pesticides, deltamethrin and dichlorodiphenyltrichloroethane (DDT), on Xenopus laevis by incorporating different levels of biological organisation. Pesticide accumulation in frog tissue was measured alongside liver metabolomics and individual swimming behaviour to assess whether changes presented at these different levels, and if such changes could be linked between levels. Results showed evidence of concentration dependent accumulation of DDT and its metabolites, but no measurable accumulation of deltamethrin in adult X. laevis after 96 h of exposure. Both DDT and deltamethrin were shown to cause alterations in the liver metabolome of X. laevis. We also showed that some of these changes can be enhanced in exposure to a mixture of these two pesticides. Initial behavioural responses recorded directly after exposure were seen in the form of decreased activity, less alterations between mobility states, and less time spent at the water surface. This response persisted after 96 h of exposure to a mixture of the two pesticides. This study shows that sub-lethal exposure to pesticides can alter the biochemical homeostasis of frogs with the potential to cascade onto behavioural and ecological levels in mixture exposure scenarios.
Collapse
Affiliation(s)
- Nico J Wolmarans
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Laboratory of Systemic, Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium.
| | - Lieven Bervoets
- Laboratory of Systemic, Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Patrick Meire
- Ecosystem Management Research Group (Ecobe), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
49
|
Redondo-López S, León AC, Jiménez K, Solano K, Blanco-Peña K, Mena F. Transient exposure to sublethal concentrations of a pesticide mixture (chlorpyrifos-difenoconazole) caused different responses in fish species from different trophic levels of the same community. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109208. [PMID: 34626844 DOI: 10.1016/j.cbpc.2021.109208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 01/16/2023]
Abstract
The assessment of early effects caused in biota by sublethal exposure to pesticide mixtures should enhance the realism in the ecological risk assessment for agricultural landscapes. This study aimed to evaluate sub-individual responses in fish, which can be linked with outcomes at higher levels of biological organization and affect their trophic relationships. A multilevel biomarker approach was applied to assess the effects of a 48 h exposure of two freshwater mesoamerican fish species (Parachromis dovii and Poecilia gillii) to a mixture of sublethal concentrations of chlorpyrifos (5 μg/L) and difenoconazole (325 μg/L). Transcriptomic induction of cyp1A and the activities of 7-ethoxy-resorufin-O-distillase (EROD) and glutathione S-transferase (GST) were measured as biotransformation-related biomarkers; cholinesterase activity (ChE) was assessed as a neurotoxicity biomarker; resting metabolic rate (RMR) was measured as a physiological biomarker; and the movement of fish in a dark-light environment as a behavior biomarker. The exposure to the mixture had evident effects on P. gillii, with significant induction of cyp1A transcription, increased EROD activity, ChE inhibition in muscle, and increased permanence in the light side of the dark-light environment. Meanwhile, P. dovii only showed significant induction of cyp1A, without evidence of neurotoxicity or changes in behavior. This study demonstrates that the severity of the effects caused by the exposure to a mixture of pesticides can differ among species from the same trophic chain. The potential impairment of predator-prey relationships is a relevant effect that pesticide pollution can cause and it should be considered for the risk assessment of such contaminants.
Collapse
Affiliation(s)
- Sergei Redondo-López
- Instituto Regional de Estudios en Sustancias Tóxicas, Central American Institute for Studies on Toxic Substances (IRET), Costa Rica.
| | - Ana C León
- Escuela de Medicina Veterinaria, School of Veterinary Medicine, Universidad Nacional, Costa Rica.
| | - Katherine Jiménez
- Instituto Regional de Estudios en Sustancias Tóxicas, Central American Institute for Studies on Toxic Substances (IRET), Costa Rica
| | - Karla Solano
- Instituto Regional de Estudios en Sustancias Tóxicas, Central American Institute for Studies on Toxic Substances (IRET), Costa Rica
| | - Kinndle Blanco-Peña
- Instituto Regional de Estudios en Sustancias Tóxicas, Central American Institute for Studies on Toxic Substances (IRET), Costa Rica
| | - Freylan Mena
- Instituto Regional de Estudios en Sustancias Tóxicas, Central American Institute for Studies on Toxic Substances (IRET), Costa Rica.
| |
Collapse
|
50
|
Pescatore T, Di Nica V, Finizio A, Ademollo N, Spataro F, Rauseo J, Patrolecco L. Sub-lethal effects of soil multiple contamination on the avoidance behaviour of Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112861. [PMID: 34628156 DOI: 10.1016/j.ecoenv.2021.112861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/25/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Natural ecosystems are frequently exposed to complex mixtures of different chemicals. However, the environmental risk assessment is mainly based on data from individual substances. In this study, the individual and combined effects on the terrestrial earthworm E. fetida exposed to the anionic surfactant sodium lauryl ether sulphate (SLES) and the pesticides chlorpyrifos (CPF) and imidacloprid (IMI) were investigated, by using the avoidance behaviour as endpoint. Earthworms were exposed to a soil artificially contaminated with five sub-lethal concentrations of each contaminant, both as single substances and in combination of binary and ternary mixtures. Overall results showed that IMI provoked the highest avoidance effect on earthworms, with a concentration value that induced an avoidance rate of 50% of treated organisms (AC50) of 1.30 mg/kg, followed by CPF (AC50 75.26 mg/kg) and SLES (AC50 139.67 mg/kg). The application of the Combination Index (CI) method, indicated that a deviation from the additive response occurred for most of the tested chemical mixtures, leading to synergistic or antagonistic avoidance responses. Synergistic effects were produced by the exposure to the two lowest concentrations of the CPF+IMI mixture, and by the highest concentrations of SLES+CPF and SLES+CPF+IMI mixtures. On the contrary, antagonistic effects were observed at the lowest concentrations of the binary mixtures containing the SLES and at almost all the tested concentrations of the SLES+CPF+IMI mixture (with the exception of the highest tested concentration). These results show that the avoidance test is suitable to assess the detrimental effects exerted on earthworms by chemical mixtures in soil ecosystems and the use of behavioural endpoints can increase the ecological significance of environmental risk assessment procedures.
Collapse
Affiliation(s)
- Tanita Pescatore
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy; Department of Ecological and Biological Science (DEB-Tuscia University), Viterbo, Italy
| | - Valeria Di Nica
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Milan, Italy.
| | - Antonio Finizio
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Milan, Italy
| | - Nicoletta Ademollo
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy
| | - Francesca Spataro
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy
| | - Jasmin Rauseo
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy
| |
Collapse
|