1
|
Verma CR, Khare T, Chakraborty P, Gosavi SM, Petrtýl M, Kalous L, Kumkar P. Impact of diethyl phthalate on freshwater planarian behaviour, regeneration, and antioxidant defence. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107110. [PMID: 39378734 DOI: 10.1016/j.aquatox.2024.107110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Diethyl phthalate (DEP) has been widely used as a plasticiser in various consumer products, including cosmetics, personal care items, and pharmaceuticals, and recent studies reported a higher abundance of this priority phthalate in the aquatic environment. DEP is a potential endocrine disruptor, affecting immune systems in humans and wildlife even at low-level chronic exposure. As concern over phthalates increases globally, regulatory bodies focus more on their environmental impact. However, limited research is available, particularly using model organisms like planarians. Planarians are ideal for toxicological studies and may provide insightful information on pollutants' neurotoxic, developmental, and ecological effects, especially in freshwater environments where planarians play a vital role in ecosystem balance. Therefore, the objective of the current study was to examine the toxicity of DEP using the freshwater Dugesia sp., as an experimental animal. The LC50 for the test organism was calculated using DEP concentrations of 800, 400, 200, 100, and 50 µM, with an estimated LC50 of 357.24 µM. Furthermore, planarians were exposed to sub-lethal DEP concentration (178.62 µM) for one day as well as eight days to evaluate the impact of DEP on planarian locomotion, feeding behaviour, and regeneration ability. At sub-lethal concentration, locomotion and feeding ability were decreased, and regeneration was delayed. Furthermore, neuro-transmittance in planaria was altered by sub-lethal DEP concentration, as indicated by a reduced acetylcholinesterase (AChE) activity. DEP exposure induced oxidative damage in the tested planarians as shown by a marked increase in stress biomarkers, including lipid peroxidation levels and antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), and glutathione S-transferase (GST). Our study revealed that DEP exposure may prove fatal to freshwater organisms, such as planarians. The observed alterations in behaviour and regeneration ability demonstrate the severity of the effects exerted by DEP as a toxicant in aquatic ecosystems, thereby indicating the need to restrict its usage to protect aquatic environments.
Collapse
Affiliation(s)
- Chandani R Verma
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Tushar Khare
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic; Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India; University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Sachin M Gosavi
- Department of Zoology, Maharashtra College of Arts, Science and Commerce, Mumbai, Maharashtra, India
| | - Miloslav Petrtýl
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Lukáš Kalous
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Pradeep Kumkar
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic.
| |
Collapse
|
2
|
Khezami F, Gómez-Navarro O, Barbieri MV, Khiari N, Chkirbene A, Chiron S, Khadhar S, Pérez S. Occurrence of contaminants of emerging concern and pesticides and relative risk assessment in Tunisian groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167319. [PMID: 37742978 DOI: 10.1016/j.scitotenv.2023.167319] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Groundwater is an important source for drinking water supply, agricultural irrigation and industrial uses in the Middle East and North Africa region. Due to the growing need for groundwater use, groundwater quality studies on the presence of contaminants of emerging concern (CECs) and pesticides have gained attention. The Wadi El Bey is one of the most polluted areas in Tunisia. However, very limited data on CECs infiltration into aquifers has been described, in comparison to industrialized countries where groundwater contamination has been comprehensively addressed. To gain early insight into potential contamination, groundwater wells in northeast Tunisia, an area with high population density and intensive agricultural activity were sampled during two seasons and were analyzed with two high resolution mass spectrometry approaches: target and suspect screening. The latter was used for screening banned pesticides. A selection of 116 CECs of which 19 are transformation products (TPs) and 20 pesticides previously prioritized by suspect screening were screened in the groundwater samples. The results showed the presence of 69 CECs and 1 TP and 20 pesticides at concentrations per well, ranging between 43 and 7384 ng L-1 and 7.3 and 80 ng L-1, respectively. CECs concentrations in Tunisian groundwater do not differ from those in industrialized countries. WWTPs were considered the main source of pollution, where the main classes detected were analgesics, antihypertensives and artificial sweeteners and especially caffeine, salicylic acid and ibuprofen were found to be ubiquitous. Regarding pesticides, triazines herbicides and carbamates insecticides pose the highest concern due to their ubiquitous presence, high leachability potential for most of them and high toxicity. The environmental risk assessment (ERA) highlighted the high risk that caffeine, ibuprofen, and propoxur may pose to the environment, and consequently, to non-target organisms. This study provides occurrence and ERA analysis of CECs and pesticides in Tunisian groundwater.
Collapse
Affiliation(s)
- Farah Khezami
- Laboratory of Georessources, Technopole of Borj Cedria, University Carthage, Soliman, Tunisia
| | | | - Maria Vittoria Barbieri
- UMR HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 Av. Charles Flahault, 34093 Montpellier, France
| | - Nouha Khiari
- Laboratory of Georessources, Technopole of Borj Cedria, University Carthage, Soliman, Tunisia
| | - Anis Chkirbene
- LR16AGR02 Water Science and Technology Research Laboratory, National Institute of Agronomy, University of Carthage, Tunis, Tunisia
| | - Serge Chiron
- UMR HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 Av. Charles Flahault, 34093 Montpellier, France
| | - Samia Khadhar
- Laboratory of Georessources, Technopole of Borj Cedria, University Carthage, Soliman, Tunisia
| | - Sandra Pérez
- ONHEALTH, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
3
|
Peivasteh-roudsari L, Barzegar-bafrouei R, Sharifi KA, Azimisalim S, Karami M, Abedinzadeh S, Asadinezhad S, Tajdar-oranj B, Mahdavi V, Alizadeh AM, Sadighara P, Ferrante M, Conti GO, Aliyeva A, Mousavi Khaneghah A. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023; 9:e18140. [PMID: 37539203 PMCID: PMC10395372 DOI: 10.1016/j.heliyon.2023.e18140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a growing public health concern worldwide. Consumption of foodstuffs is currently thought to be one of the principal exposure routes to EDCs. However, alternative ways of human exposure are through inhalation of chemicals and dermal contact. These compounds in food products such as canned food, bottled water, dairy products, fish, meat, egg, and vegetables are a ubiquitous concern to the general population. Therefore, understanding EDCs' properties, such as origin, exposure, toxicological impact, and legal aspects are vital to control their release to the environment and food. The present paper provides an overview of the EDCs and their possible disrupting impact on the endocrine system and other organs.
Collapse
Affiliation(s)
| | - Raziyeh Barzegar-bafrouei
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kurush Aghbolagh Sharifi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Shamimeh Azimisalim
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marziyeh Karami
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Abedinzadeh
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Asadinezhad
- Department of Food Science and Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Behrouz Tajdar-oranj
- Food and Drug Administration of Iran, Ministry of Health and Medical Education, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 1475744741, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Sadighara
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|
4
|
Sun Z, Li D, Wang H, Ding Y, Zhang C, Wang S, Wang X, Li B, Xu D. Polysaccharide of Atractylodes macrocephala Koidz(PAMK) protects against DEHP-induced apoptosis in grass carp hepatocytes. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108587. [PMID: 36773714 DOI: 10.1016/j.fsi.2023.108587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a new environmental pollutant, which is widely used in plastic additives. DEHP and its metabolites pollute surface water and threaten the survival of fish. In order to investigate the mechanism of DEHP-induced apoptosis on grass carp hepatocytes, we treated grass carp hepatocytes with DEHP, and selected Atractylodes macrocephala Koidz (PAMK) to study its inhibitory effect on DEHP. The results showed that after DEHP exposure, apoptosis related proteins expression were increased significantly, leading to hepatocytes apoptosis. Moreover, AO/EB staining and Hoechst staining also showed that the number of apoptotic cells increased after DEHP exposure. It should be noted that PAMK simultaneous treatment could alleviate apoptosis induced by DEHP. The innovation of this study is that the application of Chinese herbal medicine (PAMK) to antagonize the damage of DEHP in fish was investigated for the first time. This study indicated that traditional Chinese medicine can also be used in fish production to reduce the accumulation of food-derived drugs.
Collapse
Affiliation(s)
- Zongyi Sun
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Dejun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Haibin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Ding
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shuyue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xuejiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bingxin Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Danning Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
5
|
Dueñas-Moreno J, Mora A, Cervantes-Avilés P, Mahlknecht J. Groundwater contamination pathways of phthalates and bisphenol A: origin, characteristics, transport, and fate - A review. ENVIRONMENT INTERNATIONAL 2022; 170:107550. [PMID: 36219908 DOI: 10.1016/j.envint.2022.107550] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Phthalic acid esters (PAEs) or phthalates and bisphenol A (BPA) are emerging organic contaminants (EOCs) that may harm biota and human health. Humans can be exposed to these contaminants by drinking water consumption from water sources such as groundwater. Before their presence in aquifer systems, phthalates and BPA can be found in many matrices due to anthropogenic activities, which result in long-term transport to groundwater reservoirs by different mechanisms and reaction processes. The worldwide occurrence of phthalates and BPA concentrations in groundwater have ranged from 0.1 × 10-3 to 3 203.33 µg L-1 and from 0.09 × 10-3 to 228.04 µg L-1, respectively. Therefore, the aim of this review is to describe the groundwater contamination pathways of phthalates and BPA from the main environmental sources to groundwater. Overall, this article provides an overview that integrates phthalate and BPA environmental cycling, from their origin to human reception via groundwater consumption. Additionally, in this review, the readers can use the information provided as a principal basis for existing policy ratification and for governments to develop legislation that may incorporate these endocrine disrupting compounds (EDCs) as priority contaminants. Indeed, this may trigger the enactment of regulatory guidelines and public policies that help to reduce the exposure of these EDCs in humans by drinking water consumption.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64149, Nuevo León, Mexico.
| |
Collapse
|
6
|
Samandra S, Mescall OJ, Plaisted K, Symons B, Xie S, Ellis AV, Clarke BO. Assessing exposure of the Australian population to microplastics through bottled water consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155329. [PMID: 35513155 DOI: 10.1016/j.scitotenv.2022.155329] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The presence of microplastics in the environment is substantially documented; however, the pathways of dietary exposure to microplastics are not yet well understood. This is the first study to document the presence of microplastics in bottled water sold in Australia from commercial outlets. In total, 16 brands of bottled water (Australian Sourced: n = 11, Imported: n = 5) sold in the two largest supermarkets in Australia were analysed in triplicate (n = 48) for the presence of polyethylene, PE; polystyrene, PS; polypropylene, PP; polyvinyl chloride, PVC; polyethylene terephthalate, PET; polycarbonate, PC; polymethylmethacrylate, PMMA; and polyamide, PA. Microplastics were detected in 94% (n = 15) of the samples, with PP (n = 14, 88%), PET (n = 10, 63%), PA (n = 7, 44%), and PE (n = 6, 38%) the most frequently detected. On average, a litre of bottled water contained 13 ± 19 (St Dev) microplastics, ranging from 0 to 80 microplastics/L. The average size of the microplastics identified in this study was 77 ± 22 μm. It was found that bottled water sourced and packaged overseas contained four times as many microplastics compared to bottled water sourced in Australia. It was estimated that in 2017, 28.3% of the Australian population consumed on average 30.8 L of bottled water; therefore, using the result from this study it is estimated that Australians are exposed to 400 microplastics annually through the consumption of bottled water. To understand the total amount of microplastics that Australians could be exposed to through dietary routes, further work is required to observe the presence of microplastics in other beverages and food.
Collapse
Affiliation(s)
- Subharthe Samandra
- School of Chemistry, Australian Laboratory for Emerging Contaminants (ALEC), The University of Melbourne, Grattan Street, Melbourne, Victoria 3010, Australia; Eurofins Environment Testing Australia & New Zealand, Australia
| | - Olivia J Mescall
- Eurofins Environment Testing Australia & New Zealand, Australia; School of Science/School of Global, Urban, and Social Studies, Royal Melbourne Institute of Technology, La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Katie Plaisted
- Eurofins Environment Testing Australia & New Zealand, Australia; Centre for Anthropogenic Pollution Impact and Management, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bob Symons
- Eurofins Environment Testing Australia & New Zealand, Australia
| | - Shay Xie
- Eurofins Environment Testing Australia & New Zealand, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Grattan Street, Melbourne, Victoria 3010, Australia
| | - Bradley O Clarke
- School of Chemistry, Australian Laboratory for Emerging Contaminants (ALEC), The University of Melbourne, Grattan Street, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
7
|
Pourfadakari S, Dobaradaran S, De-la-Torre GE, Mohammadi A, Saeedi R, Spitz J. Evaluation of occurrence of organic, inorganic, and microbial contaminants in bottled drinking water and comparison with international guidelines: a worldwide review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55400-55414. [PMID: 35668268 DOI: 10.1007/s11356-022-21213-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to evaluate the levels of inorganic and organic substances as well as microbial contaminants in bottled drinking water on a global scale. The findings were compared to WHO guidelines, EPA standards, European Union (EU) directive, and standards drafted by International Bottled Water Association (IBWA). Our review showed that 46% of studies focused on the organic contaminants, 25% on physicochemical parameters, 12% on trace elements, 7% on the microbial quality, and 10% on microplastics (MPs) and radionuclides elements. Overall, from the 54 studies focusing on organic contaminants (OCs) compounds, 11% of studies had higher OCs concentrations than the standard permissible limit. According to the obtained results from this review, several OCs, inorganic contaminants (IOCs), including CHCl3, CHBrCl2, DEHP, benzene, styrene, Ba, As, Hg, pb, Ag, F, NO3, and SO4 in bottled drinking water of some countries were higher than the international guidelines values that may cause risks for human health in a long period of time. Furthermore, some problematic contaminants with known or unknown health effects such as EDCs, DBP, AA, MPs, and some radionuclides (40K and 222Rn) lack maximum permissible values in bottled drinking water as stipulated by international guidelines. The risk index (HI) for OCs and IOCs (CHBrCl2, Ba, As, and Hg) was higher than 1 in adults and children, and the value of HI for CHCl3 in children was more than 1. Thus, further studies are required to have a better understanding of all contaminants levels in bottled drinking water.
Collapse
Affiliation(s)
- Sudabeh Pourfadakari
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Boostan 19 Alley, Imam Khomeini Street, Bushehr, 7514763448, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Boostan 19 Alley, Imam Khomeini Street, Bushehr, 7514763448, Iran.
- Department of Environmental Health Engineering, Faculty of Health and Niutrition, Bushehr, Iran.
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | | | - Azam Mohammadi
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Saeedi
- Department of Health Sciences, Faculty of Health, Safety and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jorg Spitz
- Akademie für Menschliche Medizin GmbH, Krauskopfallee 27, 65388, Schlangenbad, Germany
| |
Collapse
|
8
|
Vivas MPM, Martinez ST, de Andrade JB, da Rocha GO. Method development using chemometric tools for determination of endocrine-disrupting chemicals in bottled mineral waters. Food Chem 2022; 370:131062. [PMID: 34537431 DOI: 10.1016/j.foodchem.2021.131062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/06/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
A simple method was developed to determine 14 endocrine-disrupting chemicals (EDCs) in bottled waters, based on dispersive micro-solid phase extraction (d-µ-SPE) and liquid chromatography-mass spectrometry (LC-MS). Extraction was optimized using 2 k-1 factorial and Doehlert experimental designs. Optimized conditions were 80 mg C18, 25 min extraction at 1000 rpm, and 6 min desorption time. Repeatability was below 17 % for all EDCs. LOD and LOQ varied from 1.60 ng L-1 (estradiol, E2) to 23.2 ng L-1 (dimethylphthalate, DMP) and from 5.33 ng L-1 (E2) to 77.3 ng L-1 (DMP). We found DMP and bisphenol A (BPA) in samples after the heat treatment. DMP was up to 58.7 µg L-1, while BPA was up to 1.34 µg L-1. Tolerance of daily intake (TDI) for DMP were 2.50-2.94 µg kg-1 day-1 (children) and 1.43-1.68 µg kg-1 day-1 (adults). TDI for BPA were 0.03-0.07 µg kg-1 day-1 (children) and 0.01-0.04 µg kg-1 day-1 (adults).
Collapse
Affiliation(s)
- Mikhael P M Vivas
- Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170-115 Salvador, BA, Brazil; Programa de Pós-Graduação em Energia e Ambiente (PGEnAm), Escola Politécnica, Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-290 Salvador, BA, Brazil
| | - Sabrina T Martinez
- Programa de Pós-Graduação em Energia e Ambiente (PGEnAm), Escola Politécnica, Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-290 Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil
| | - Jailson B de Andrade
- Programa de Pós-Graduação em Energia e Ambiente (PGEnAm), Escola Politécnica, Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-290 Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Universitário SENAI-CIMATEC, 41650-110 Salvador, BA, Brazil
| | - Gisele O da Rocha
- Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170-115 Salvador, BA, Brazil; Programa de Pós-Graduação em Energia e Ambiente (PGEnAm), Escola Politécnica, Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-290 Salvador, BA, Brazil; Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil.
| |
Collapse
|
9
|
Alhaddad FA, Abu-Dieyeh M, Da’ana D, Helaleh M, Al-Ghouti MA. Occurrence and removal characteristics of phthalate esters from bottled drinking water using silver modified roasted date pits. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:733-751. [PMID: 34150270 PMCID: PMC8172698 DOI: 10.1007/s40201-021-00642-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND This paper aims to investigate the occurrence and removal characteristics of phthalate esters from bottled drinking water using silver modified roasted date pits. Three adsorbents, namely roasted date pits (RODP), silver-modified roasted date pits (S-RODP), and activated carbon (AC) were used to investigate their adsorption characterizations in removing dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP), and di-n-octyl phthalate (DNOP) from the collected bottle water samples. METHODS The occurrences of the phthalate esters in the collected bottled water samples were carried out at different temperatures (30, 50, and 60 °C), and analyzed using gas chromatography-mass spectrometry analysis - selected ion monitoring. Batch adsorption isotherms were used to study and establish the efficiency of such adsorbents in removing phthalate esters, in which they describe the adsorbent-adsorbate interaction systems. Adsorption efficiency of the various adsorbents was investigated by using different adsorbent masses (0.05 g, 0.10 g, and 0.15 g) and temperature (30 °C, 50 °C, and 60 °C). Different physical and chemical characterizations were studied using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), Brunauer-Emmett-Teller (BET) surface area, pore radius, and pore volume. RESULTS The results indicated that the most abundant phthalate esters were DMP followed by DEP under 30 °C; however, DNOP was not detected in any of the tested water samples, except for one sample under 30 °C with a concentration of 0.031 μg/mL. The obtained results showed that phthalate esters leaching to the bottled drinking water were affected by storage temperature. The phthalate esters levels were increased with increasing the temperature to 60 °C. It was concluded that the ability of S-RODP for the adsorption of phthalate esters was better than the removal percentage obtained by AC and RODP. The removal percentage was increased from 90 to 99% by increasing the temperature from 30 to 50 °C and then decreased to 92.3% at 60 °C. CONCLUSION RODP was successfully used as an effective adsorbent for phthalate esters removal from drinking water. However, S-RODP has the highest removal abilities than other adsorbents due to the newly formed functional groups on its surface.
Collapse
Affiliation(s)
- Fedae A. Alhaddad
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, State of Qatar Doha
| | - Mohammed Abu-Dieyeh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, State of Qatar Doha
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa, 13133 Jordan
| | - Dana Da’ana
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, State of Qatar Doha
| | - Murad Helaleh
- Section Head Supplements Testing, Anti Doping Lab Qatar, P.O. Box 27775, Doha, Qatar
| | - Mohammad A. Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, State of Qatar Doha
| |
Collapse
|
10
|
da Silva Costa R, Sainara Maia Fernandes T, de Sousa Almeida E, Tomé Oliveira J, Carvalho Guedes JA, Julião Zocolo G, Wagner de Sousa F, do Nascimento RF. Potential risk of BPA and phthalates in commercial water bottles: a minireview. JOURNAL OF WATER AND HEALTH 2021; 19:411-435. [PMID: 34152295 DOI: 10.2166/wh.2021.202] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The global water bottling market grows annually. Today, to ensure consumer safety, it is important to verify the possible migration of compounds from bottles into the water contained in them. Potential health risks due to the prevalence of bisphenol A (BPA) and phthalates (PAEs) exposure through water bottle consumption have become an important issue. BPA, benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) can cause adverse effects on human health. Papers of literature published in English, with BPA, BBP, DBP and DEHP detections during 2017, by 2019 by liquid chromatography and gas chromatography analysis methods were searched. The highest concentrations of BPA, BBP, DBP and DEHP in all the bottled waters studied were found to be 5.7, 12.11, 82.8 and 64.0 μg/L, respectively. DBP was the most compound detected and the main contributor by bottled water consumption with 23.7% of the Tolerable Daily Intake (TDI). Based on the risk assessment, BPA, BBP, DBP and DEHP in commercial water bottles do not pose a serious concern for humans. The average estrogen equivalent level revealed that BPA, BBP, DBP and DEHP in bottled waters may induce adverse estrogenic effects on human health.
Collapse
Affiliation(s)
- Rouse da Silva Costa
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Tatiana Sainara Maia Fernandes
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Edmilson de Sousa Almeida
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Juliene Tomé Oliveira
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Jhonyson Arruda Carvalho Guedes
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail: ; Embrapa Tropical Agroindustry, R. Dra Sara Mesquita 2270, 60511-110 Fortaleza, CE, Brazil
| | | | - Francisco Wagner de Sousa
- Department of Education - Chemistry Licenciate, Federal Institute of Education, Science and Technology, R. Francisco da Rocha Martins S/N, 61609-090 Caucaia, CE, Brazil
| | - Ronaldo Ferreira do Nascimento
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| |
Collapse
|
11
|
López-Velázquez K, Guzmán-Mar JL, Saldarriaga-Noreña HA, Murillo-Tovar MA, Hinojosa-Reyes L, Villanueva-Rodríguez M. Occurrence and seasonal distribution of five selected endocrine-disrupting compounds in wastewater treatment plants of the Metropolitan Area of Monterrey, Mexico: The role of water quality parameters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116223. [PMID: 33316500 DOI: 10.1016/j.envpol.2020.116223] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/11/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Five endocrine-disrupting compounds (EDCs) were determined in four urban wastewater treatment plants (WWTPs) of the Metropolitan Area of Monterrey (MAM) in two seasonal periods (winter and summer). The MAM, one of the most urbanized areas in Mexico, is characterized by high industrial activity and population density, leading to extensive use of several EDCs. In the MAM, ∼90% of urban and industrial wastewater is treated in WWTPs, where EDCs can be partially eliminated. In this work, dissolved levels of 17β-estradiol (E2), 17α-ethinyl estradiol (EE2), bisphenol A (BPA), 4-nonylphenol (4NP), and 4-tert-octylphenol (4TOP) in wastewater were determined. The EDCs' determination was carried out through solid-phase extraction (SPE) and gas chromatography coupled to mass spectrometry (GC-MS). High EDCs levels (0.4-450 ng/L) were found in the influents of WWTPs, while concentrations in the effluents ranged from 0.2 to 26.8 ng/L, with E2, EE2, and 4TOP being the most persistent. The Spearman correlation analysis revealed the association between E2 and EE2 (r = 0.4835, p < 0.05), and between BPA and 4NP (r = 0.5180, p < 0.05), suggesting that these EDCs have similar sources. Also, E2, BPA, and 4TOP were positively correlated with the chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solids (TSS) (r = 0.4080-0.5694, p < 0.05), indicating the association of the EDCs with the organic matter in the wastewater. The factor analysis confirmed the significant correlation of COD, BOD, TSS, temperature, and pH with the high occurrence of 4TOP during the summer. It was also confirmed that summer warmer temperatures favored the removal of BPA and 4NP in the studied WWTPs. Finally, the studied sites were classified by cluster analysis in three groups, revealing the impact that seasonality has on the behavior of the selected EDCs.
Collapse
Affiliation(s)
- Khirbet López-Velázquez
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Jorge L Guzmán-Mar
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Hugo A Saldarriaga-Noreña
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, Mexico
| | - Mario A Murillo-Tovar
- CONACYT-Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, Mexico
| | - Laura Hinojosa-Reyes
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Minerva Villanueva-Rodríguez
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad s/n, Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
12
|
Bunting SY, Lapworth DJ, Crane EJ, Grima-Olmedo J, Koroša A, Kuczyńska A, Mali N, Rosenqvist L, van Vliet ME, Togola A, Lopez B. Emerging organic compounds in European groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:115945. [PMID: 33261962 DOI: 10.1016/j.envpol.2020.115945] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
In Europe, emerging organic compounds (EOCs) in groundwater is a growing research area. Prioritisation for monitoring EOCs in Europe was formalised in 2019 through the development of the first voluntary groundwater watch list (GWWL). Despite this, groundwater occurrence data in the peer reviewed literature for Europe has not been reviewed to date. Questions surrounding the effect, toxicity, movement in the subsurface and unsaturated zone make the process of regulating EOC use difficult. The aim in Europe is to develop a unified strategy for the classification, and prioritisation of EOCs to be monitored in groundwater. This paper compiles evidence from the recent published studies from across Europe, since 2012, when the last major literature global review of EOCs in groundwater took place. A total of 39 studies were identified for review based on specific selection criteria (geography, publication date, sample size>10, inclusion of EOCs data). Data on specific compounds, and associated meta-data, are compiled and reviewed. The two most frequently detected EOCs, carbamazepine and caffeine, occurred in groundwater at concentrations of up to 2.3 and 14.8 μg/L, respectively. The most frequently reported category of compounds were 'Pharmaceuticals'; a highly studied group with 135 compounds identified within 31 of the 39 studies. In Europe, the majority of reviewed studies (23) were at a regional scale, looking specifically at EOCs in a specific city or aquifer. The use of analytical methods is not uniform across Europe, and this inevitably influences the current assessment of EOCs in groundwater. A correlation between the number of compounds analysed for, and the number detected in groundwater highlights the need for further studies, especially larger-scale studies throughout Europe. For the development of EU and national regulation, further work is required to understand the occurrence and impacts of EOCs in groundwater throughout Europe and elsewhere.
Collapse
Affiliation(s)
- S Y Bunting
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK.
| | - D J Lapworth
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK
| | - E J Crane
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK
| | | | - A Koroša
- Geological Survey of Slovenia, Department of Hydrogeology, Dimičeva ulica 14, Ljubljana, Slovenia
| | - A Kuczyńska
- Polish Geological Institute, National Research Institute, ul. Rakowiecka 4, 00-975, Warsaw, Poland
| | - N Mali
- Geological Survey of Slovenia, Department of Hydrogeology, Dimičeva ulica 14, Ljubljana, Slovenia
| | - L Rosenqvist
- Geological Survey of Sweden, Box 670, SE-751 28, Uppsala, Sweden
| | - M E van Vliet
- TNO Geological Survey of the Netherlands, Utrecht, the Netherlands
| | - A Togola
- BRGM, (French Geological Survey) BP 6009, 45060, Orléans Cedex 2, France
| | - B Lopez
- BRGM, (French Geological Survey) BP 6009, 45060, Orléans Cedex 2, France
| |
Collapse
|
13
|
Pinasseau L, Wiest L, Volatier L, Mermillod-Blondin F, Vulliet E. Emerging polar pollutants in groundwater: Potential impact of urban stormwater infiltration practices. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115387. [PMID: 32829126 DOI: 10.1016/j.envpol.2020.115387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
The quality of groundwater (GW) resources is decreasing partly due to chemical contaminations from a wide range of activities, such as industrial and agricultural enterprises and changes in land-use. In urban areas, one potential major pathway of GW contamination is associated with urban water management practices based on stormwater runoff infiltration systems (SIS). Data on the performance of the upper layer of soil and the unsaturated zone of infiltration basins to limit the contamination of GW by hydrophilic compounds are lacking. With this aim, the impact of infiltration practices on GW contamination was assessed for 12 pesticides and 4 pharmaceuticals selected according to their ecotoxicological relevance and their likelihood of being present in urban stormwater and GW. For this purpose, 3 campaigns were conducted at 4 SIS during storm events. For each campaign, passive samplers based on the use of Empore™ disk were deployed in GW wells upstream and downstream of SIS, as well as in the stormwater runoff entering the infiltration basins. Upstream and downstream GW contaminations were compared to evaluate the potential effect of SIS on GW contamination and possible relationships with stormwater runoff composition were examined. Our results showed two interesting opposite trends: (i) carbendazim, diuron, fluopyram, imidacloprid and lamotrigine had concentrations significantly increasing in GW impacted by infiltration, indicating a contribution of SIS to GW contamination, (ii) atrazine, simazine and 2 transformation products exhibited concentrations significantly decreasing with infiltration due to a probable dilution of historic GW contaminants with infiltrated stormwater runoff. The other 7 contaminants showed no general trend. This study demonstrates that passive samplers deployed in GW wells enabled the capture of emerging polar pollutants present at very low concentrations and allowed the assessment of infiltration practices on GW quality. New data on GW and urban stormwater are provided for poorly studied hazardous compounds.
Collapse
Affiliation(s)
- Lucie Pinasseau
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France.
| | - Laurence Volatier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 Laboratoire D'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 6 Rue Raphaël Dubois, F-69622, Villeurbanne, France
| | - Florian Mermillod-Blondin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 Laboratoire D'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 6 Rue Raphaël Dubois, F-69622, Villeurbanne, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France
| |
Collapse
|
14
|
Bach C, Rosin C, Munoz JF, Dauchy X. National screening study investigating nine phthalates and one adipate in raw and treated tap water in France. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36476-36486. [PMID: 32556996 DOI: 10.1007/s11356-020-09680-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The goal of this study was to determine the potential exposure of much of the French population to nine phthalates and bis (2-ethylhexyl) adipate (DEHA) due to water consumption. The occurrence of these compounds was investigated in raw and treated water from public water systems. Water samples were collected in one sampling campaign equally distributed across 101 French départements (a French administrative unit) from November 2015 to July 2016. In all, 271 raw water samples and 283 treated water samples were collected. A specific sampling protocol was conducted in order to assess phthalate pollution during sampling and analysis, and to produce reliable results. Field blanks were thus collected at the same time as real samples at each sampling point. The contamination detected in field blanks was due to diethyl phthalate (DEP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), and di-2-ethylhexyl phthalate (DEHP), which are common phthalate interferences in blanks. Their concentrations were never ten times higher than the limits of quantification (LOQ). In tap water, the most frequently detected compound was DBP, at a maximum concentration of 1300 ng/L. In raw water, however, DEP was the most frequently detected analyte with concentrations ranging from 255 to 406 ng/L, while DIBP was observed at a maximum concentration of 1650 ng/L. It is worth mentioning that DEHP-the most widely used phthalate-was only detected in one sample of raw water. Phthalates are not concentrated in any particular area of France in either raw or treated water.
Collapse
Affiliation(s)
- Cristina Bach
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, 54000, Nancy, France.
| | - Christophe Rosin
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, 54000, Nancy, France
| | - Jean-François Munoz
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, 54000, Nancy, France
| | - Xavier Dauchy
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, 54000, Nancy, France
| |
Collapse
|
15
|
Aborkhees G, Raina-Fulton R, Thirunavokkarasu O. Determination of Endocrine Disrupting Chemicals in Water and Wastewater Samples by Liquid Chromatography-Negative Ion Electrospray Ionization-Tandem Mass Spectrometry. Molecules 2020; 25:molecules25173906. [PMID: 32867135 PMCID: PMC7503312 DOI: 10.3390/molecules25173906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022] Open
Abstract
A liquid chromatography-negative ion electrospray ionization-tandem mass spectrometry method was developed for the simultaneous analysis of bisphenol A, 4-octylphenol, 4-nonylphenol, diethylstilbestrol, 17β-estradiol, estriol, estrone, 17α-ethinylestradiol, prednisone, and prednisolone. This method used solid-phase extraction with an elution solvent of acetonitrile to improve the stability of the analytes. To maintain the stability of analytes analyses were completed within five days. The recoveries ranged from 84 to 112% and the relative standard deviation of analysis of duplicate samples was <10%. The limits of quantitation were 1–10 ng/L. Surface water and wastewater were obtained from five wastewater treatment plants in Saskatchewan. Matrix effects were moderate to severe. Using standard addition calibration, all analytes except diethylstilbestrol and 17α-ethinyl estradiol were detected. There was a low frequency of detection of the target analytes in upstream and downstream water, indicating good removal efficiency during the wastewater treatment process. Bisphenol A and 4-nonylphenol were the only analytes detected downstream. Bisphenol A was the most frequently detected in raw wastewater (133 to 403 ng/L). Estriol was detected more often in raw wastewater than estrone or 17β-estradiol. This is the first Canadian study with the detection of prednisone and prednisolone with concentrations at 198–350 ng/L in raw wastewater at 60% of the wastewater treatment plants.
Collapse
Affiliation(s)
- Ghada Aborkhees
- Department of Chemistry & Biochemistry and Trace Analysis Facility, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Renata Raina-Fulton
- Department of Chemistry & Biochemistry and Trace Analysis Facility, University of Regina, Regina, SK S4S 0A2, Canada;
- Correspondence: ; Tel.: +1-306-585-4012
| | | |
Collapse
|
16
|
Giuliani A, Zuccarini M, Cichelli A, Khan H, Reale M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5655. [PMID: 32764471 PMCID: PMC7460375 DOI: 10.3390/ijerph17165655] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
Phthalates are a huge class of chemicals with a wide spectrum of industrial uses, from the manufacture of plastics to food contact applications, children's toys, and medical devices. People and animals can be exposed through different routes (i.e., ingestion, inhalation, dermal, or iatrogenic exposure), as these compounds can be easily released from plastics to water, food, soil, air, making them ubiquitous environmental contaminants. In the last decades, phthalates and their metabolites have proven to be of concern, particularly in products for pregnant women or children. Moreover, many authors reported high concentrations of phthalates in soft drinks, mineral waters, wine, oil, ready-to-eat meals, and other products, as a possible consequence of their accumulation along the food production chain and their accidental release from packaging materials. However, due to their different physical and chemical properties, phthalates do not have the same human and environmental impacts and their association to several human diseases is still under debate. In this review we provide an overview of phthalate toxicity, pointing out the health and legal issues related to their occurrence in several types of food and beverage.
Collapse
Affiliation(s)
- Angela Giuliani
- "G.d'Annunzio" School of Advanced Studies, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Aging Research Center, Ce.S.I., "G. d'Annunzio" University Foundation, 66100 Chieti, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Marcella Reale
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Interuniversity Center on Interactions between Electromagnetic Fields and Biosystems, National Research Council-Institute for Electromagnetic Detection of The Environment, (ICEMB-CNR-IREA), 80124 Naples, Italy
| |
Collapse
|
17
|
Čelić M, Škrbić BD, Insa S, Živančev J, Gros M, Petrović M. Occurrence and assessment of environmental risks of endocrine disrupting compounds in drinking, surface and wastewaters in Serbia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114344. [PMID: 32443213 DOI: 10.1016/j.envpol.2020.114344] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
The present study is the first comprehensive monitoring of 13 selected endocrine disrupting compounds (EDCs) in untreated urban and industrial wastewater in Serbia to assess their impact on the Danube River basin and associated freshwaters used as sources for drinking water production in the area. Results showed that natural and synthetic estrogens were present in surface and wastewater at concentrations ranging from 0.1 to 64.8 ng L-1. Nevertheless, they were not detected in drinking water. For alkylphenols concentrations ranged from 1.1 to 78.3 ng L-1 in wastewater and from 0.1 to 37.2 ng L-1 in surface water, while in drinking water concentrations varied from 0.4 to 7.9 ng L-1. Bisphenol A (BPA) was the most abundant compound in all water types, with frequencies of detection ranging from 57% in drinking water, to 70% in surface and 84% in wastewater. Potential environmental risks were characterized by calculating the risk quotients (RQs) and the estrogenic activity of EDCs in waste, surface and drinking water samples, as an indicator of their potential detrimental effects. RQ values of estrone (E1) and estradiol (E2) were the highest, exceeding the threshold value of 1 in 60% of wastewater samples, while in surface water E1 displayed potential risks in only two samples. Total estrogenic activity (EEQt) surpassed the threshold of 1 ng E2 L-1 in about 67% of wastewater samples, and in 3 surface water samples. In drinking water, EEQt was below 1 ng L-1 in all samples.
Collapse
Affiliation(s)
- Mira Čelić
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - Biljana D Škrbić
- University of Novi Sad, Faculty of Technology Novi Sad, Laboratory for Chemical Contaminants and Sustainable Development, Serbia.
| | - Sara Insa
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - Jelena Živančev
- University of Novi Sad, Faculty of Technology Novi Sad, Laboratory for Chemical Contaminants and Sustainable Development, Serbia
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003, Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
18
|
Akhbarizadeh R, Dobaradaran S, Schmidt TC, Nabipour I, Spitz J. Worldwide bottled water occurrence of emerging contaminants: A review of the recent scientific literature. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122271. [PMID: 32311916 DOI: 10.1016/j.jhazmat.2020.122271] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 05/04/2023]
Abstract
Contaminants of emerging concern (CECs) have recently been detected in bottled water and have brought about discussions on possible risks for human health. However, a systematic review of CECs in bottled water is currently lacking due to the relatively new introduction and/or detection of these pollutants. Hence, this paper reviews the existing studies on the presence of six major groups of emerging contaminants including microplastics (MPs), pharmaceuticals and personal care products (PPCPs), bisphenol A (BPA), phthalates, alkylphenols (APs), and perfluoroalkyl and polyfluoroalkyl substances (PFASs) in bottled water from different countries. Also, the findings related to CECs' levels, their possible sources, and their risks are summarized. The gathered data indicate that MPs within the size range of 1-5 μm are the most predominant and potentially toxic classes of MPs in bottled water. In addition, PPCPs, PFASs, APs, and BPA occur in concentration levels of ng/L, while phthalates occur in the μg/L level in bottled water. The bottle type plays an important role in the contamination level. As expected, water in plastic bottles with plastic caps is more polluted than in glass bottles. However, other sources of contamination such as contact materials during cleaning, bottling, and storage are not negligible. Based on the gathered data in this review, the CEC levels except for MPs (no threshold values) in bottled water of most countries do not raise a safety concern for the human. However, the occurrence of individual CECs and their association in bottled water need more accurate data to understand their own/synergistic effects on human health.
Collapse
Affiliation(s)
- Razegheh Akhbarizadeh
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Jörg Spitz
- Akademie für Menschliche Medizin GmbH, Krauskopfallee 27, 65388, Schlangenbad, Germany
| |
Collapse
|
19
|
Herrera-Herrera AV, Mohamed-Rodríguez N, Socas-Rodríguez B, Mallol C. Development of a QuEChERS-based method combined with gas chromatography-mass spectrometry for the analysis of alkanes in sediments. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Abtahi M, Dobaradaran S, Torabbeigi M, Jorfi S, Gholamnia R, Koolivand A, Darabi H, Kavousi A, Saeedi R. Health risk of phthalates in water environment: Occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in tehran, Iran. ENVIRONMENTAL RESEARCH 2019; 173:469-479. [PMID: 30981118 DOI: 10.1016/j.envres.2019.03.071] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 05/25/2023]
Abstract
Occurrence of phthalates in water resources, bottled water, and tap water, and health risk of exposure to the phthalates through drinking water in Tehran, Iran, 2018 were studied. The six phthalates with the most health and environmental concerns, including di-(2-ethylhexyl) phthalate (DEHP), butyl benzyl phthalate (BBP), di-n-butyl phthalate (DBP), diethyl phthalate (DEP), dimethyl phthalate (DMP), and di-n-octyl phthalate (DNOP) were monitored in drinking water and water resources. The average levels (±standard deviation: SD) of the total phthalates in drinking water from the water distribution system, bottled water, surface waters, and ground waters were determined to be 0.76 ± 0.19, 0.96 ± 0.10, 1.06 ± 0.23, and 0.77 ± 0.06 μg/L, respectively. The dominant compounds in the phthalates were DMP and DEHP causing a contribution to the total phthalate levels higher than 60% in all the water sources. The phthalate levels of drinking water significantly increased by contact of hot water with disposable plastic and paper cups and by sunlight exposure of bottled water (p value < 0.05). The hazard quotients (HQs) of DEHP, BBP, DBP, and DEP for all ages both sexes combined were determined to be 1.56 × 10-4, 1.01 × 10-5, 1.80 × 10-5, and 1.29 × 10-6, respectively that were much lower than the boundary value of 1.0. The disability-adjusted life years (DALYs) and DALY rate (per 100,000 people) attributable to DEHP intake through drinking water for all ages both sexes combined were estimated to be 6.385 (uncertainty interval: UI 95% 1.892 to 22.133), and 0.073 (0.022-0.255), respectively. The proportion of mortality in the attributable DALYs was over 96%. The attributable DALY rate exhibited no significant difference by sex, but was considerably affected by age in a manner that the DALY rates ranged from 0.052 (0.015-0.175) in the age group 65 y plus to 0.099 (0.026-0.304) in the age group 5 to 9 y. Both the carcinogenic and non-carcinogenic health risks of the phthalates in drinking water were considered to be very low. The results can also be of importance in terms of developing frameworks to expand the domain of burden of disease study to the other environmental risks.
Collapse
Affiliation(s)
- Mehrnoosh Abtahi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Marzieh Torabbeigi
- School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahand Jorfi
- Environmental Technology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Gholamnia
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health and Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Koolivand
- Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, Iran
| | - Hossein Darabi
- The Persian Gulf Tropical Medicine Research, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amir Kavousi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health and Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Seyoum A, Pradhan A. Effect of phthalates on development, reproduction, fat metabolism and lifespan in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:969-977. [PMID: 30453266 DOI: 10.1016/j.scitotenv.2018.11.158] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/01/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
Phthalates are used as plasticizers to increase durability, resistivity and flexibility of plastic materials. The commonly used phthalate, diethylhexyl phthalate (DEHP) is used in different plastic materials like food packaging, toys and medical devices. DEHP has been linked to different toxicities in humans as well as in animals, and as a consequence other phthalates, including dibutyl phthalate (DBP) and diethyl phthalate (DEP) are being introduced. The increased use of phthalates has resulted in contamination of aquatic ecosystem and it directly threatens the aquatic life. In this study, we analyzed the effects of three phthalates DEHP, DEP and DBP using freshwater organism Daphnia magna. Although, exposure of the three phthalates at 1 and 10 μM did not result any lethality and hatching delay, the chronic exposure for 14 days resulted in reduction of body length. There was enhanced fat accumulation on exposure to all the phthalates, as indicated by oil red O staining. qRT-PCR analysis of genes involved in fat metabolism suggests that the increase in fat content could be due to inhibition of absorption and catabolism of fatty acids. Reproduction analysis showed that DBP and DEP did not alter fecundity but surprisingly, DEHP at 1 μM increased reproduction by 1.5 fold compared to control group. Phthalates also showed negative effect on lifespan as DEP at 10 μM and DBP at both 1 and 10 μM significantly reduced the lifespan. Our data indicates that along with the banned phthalate DEHP, the other substitute phthalates DEP and DBP could also have detrimental effect on aquatic organisms.
Collapse
Affiliation(s)
- Asmerom Seyoum
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| |
Collapse
|
22
|
Dreolin N, Aznar M, Moret S, Nerin C. Development and validation of a LC–MS/MS method for the analysis of bisphenol a in polyethylene terephthalate. Food Chem 2019; 274:246-253. [DOI: 10.1016/j.foodchem.2018.08.109] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/13/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
|
23
|
Luo Q, Liu ZH, Yin H, Dang Z, Wu PX, Zhu NW, Lin Z, Liu Y. Migration and potential risk of trace phthalates in bottled water: A global situation. WATER RESEARCH 2018; 147:362-372. [PMID: 30326398 DOI: 10.1016/j.watres.2018.10.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/17/2018] [Accepted: 10/01/2018] [Indexed: 05/07/2023]
Abstract
Increasing attention has been dedicated to trace phthalates in bottled water due to the serious concerns on public health, while there is still a lack of systematic analysis and assessment of current global situation. Through analyzing five representative phthalates in bottled water over 20 countries, this work clearly revealed the phthalates-associated potential risks in both human daily intake and estrogenic effect. In the risk assessment, the kinetic models were also developed to describe and predict phthalates migration. In more than three hundred brands of bottled waters from twenty one countries, the detection frequency of the five targeted phthalates was found to be in the order of dibutyl phthalate (DBP, 67.6%), di-2-(ethyl hexyl) phthalate (DEHP, 61.7%), diethyl phthalate (DEP, 47.1%), benzyl butyl phthalate (BBP, 36.9%), and dimethyl phthalate (DMP, 30.1%). Among the countries studied relating concentrations of DEHP in bottled waters, the top five countries ranked in the order of high to low were Thailand, Croatia, Czech Republic, Saudi Arabia and China with an average level of 61.1, 8.8, 6.3, 6.2 and 6.1 μg/L, respectively. The average levels of BBP, DBP, DMP and DEP in bottled water from Pakistan were high, in which DEP and DMP were ranked 1st among all countries with the average levels of 22.4 and 50.2 μg/L, while BBP and DBP were ranked 2nd and 3rd with the average levels of 7.5 and 17.8 μg/L, respectively. The human daily intake-based risk assessment revealed that phthalates in bottled waters studied would not pose a serious concern on public health. However, the adverse estrogenic effects of phthalates in bottled water from some countries appeared to be significant. This study just shed light on global situation of phthalates in bottled water, and more efforts should be needed to systematically examine the phthalates-related safety of bottled water.
Collapse
Affiliation(s)
- Qiong Luo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ping-Xiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Neng-Wu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, Guangdong, China
| | - Yu Liu
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
24
|
Haned Z, Moulay S, Lacorte S. Migration of plasticizers from poly(vinyl chloride) and multilayer infusion bags using selective extraction and GC–MS. J Pharm Biomed Anal 2018; 156:80-87. [DOI: 10.1016/j.jpba.2018.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 11/25/2022]
|
25
|
Zaki G, Shoeib T. Concentrations of several phthalates contaminants in Egyptian bottled water: Effects of storage conditions and estimate of human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:142-150. [PMID: 29127870 DOI: 10.1016/j.scitotenv.2017.10.337] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
The occurrence and concentrations of six common phthalates were investigated for the first time in bottled water locally produced in the Egyptian market. The compounds investigated were dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), n-butyl benzyl phthalate (BBP), diethyl hexyl phthalate (DEHP), and Di-n-octyl phthalate (D-n-OP). A set of 108 bottled water samples from six different commercial brands of water bottled in transparent polyethylene terephthalate (PET) plastic bottles with high density polyethylene (HDPE) plastic caps were investigated. Water samples were analyzed immediately after purchasing (~2weeks after production), after being stored at room temperature (25±5°C), in a refrigerator (4±1°C) and outdoor under sun exposure (daylight temperature of 40±5°C). Samples were stored up to six months depending on the tested condition. Among the target compounds, only DEHP and DBP were detected in the samples analyzed immediately after purchasing with a detection frequency of 50 and 58% and mean concentrations of 0.104 and 0.082μgl-1 respectively. Significant positive correlation was obtained between the storage time, temperature and the concentration of phthalate compounds detected in the bottled water, indicating possible migration from the PET plastic material as the source. The estimated contribution of bottled water consumption to the tolerable daily intake (TDI) levels of the two most abundant phthalates observed here for adults and toddlers did not exceed 0.16 and 0.72% for DBP while these values were 0.04 and 0.16% for DEHP respectively. These estimated daily intake values from PET bottled water consumption were far below their respective TDI values and therefore should constitute no adverse health effects.
Collapse
Affiliation(s)
- Ghada Zaki
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
26
|
Le Coadou L, Le Ménach K, Labadie P, Dévier MH, Pardon P, Augagneur S, Budzinski H. Quality survey of natural mineral water and spring water sold in France: Monitoring of hormones, pharmaceuticals, pesticides, perfluoroalkyl substances, phthalates, and alkylphenols at the ultra-trace level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 603-604:651-662. [PMID: 28343692 DOI: 10.1016/j.scitotenv.2016.11.174] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 11/24/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
The aim of the present study, one of the most complete ever performed in France, was to carry out an extensive survey on the potential presence of a large amount of emerging contaminants in 40 French bottled waters, including parent compounds and metabolites. The studied samples represented 70% of the French bottled water market in volume. Six classes of compounds were investigated, most of them being unregulated in bottled waters: pesticides and their transformation products (118), pharmaceutical substances (172), hormones (11), alkylphenols (APs) (8), phthalates (11) and perfluoroalkyl substances (PFAS) (10). One of the objectives of this work was to achieve low and reliable limits of quantification (LOQs) (87% of the LOQs were below 10ng/L) using advanced analytical technologies and reliable sample preparation methodologies, including stringent quality controls. Among the 14,000 analyses performed, 99.7% of the results were below the LOQs. None of the hormones, pharmaceutical substances and phthalates were quantified. Nineteen compounds out of the 330 investigated were quantified in 11 samples. Eleven were pesticides including 7 metabolites, 6 were PFAS and 2 were APs. As regards pesticides, their sum was at least twice lower than the quality standards applicable for bottled waters in France. The presence of a majority of pesticide metabolites suggested a former use in the recharge areas of the exploited aquifers. The quantification of a few unregulated emerging compounds at the nano-trace level, such as PFAS, raised the issue of their potential sources, including long-range atmospheric transport and deposition. This study confirmed that the groundwater aquifers exploited for bottling were well-preserved from chemicals, as compared to less geologically protected groundwaters, and also underlined the need to pursue the protection policies implemented in recharge areas in order to limit the anthropogenic pressure.
Collapse
Affiliation(s)
- Laurine Le Coadou
- Université de Bordeaux, EPOC, UMR 5805 LPTC, 351, Cours de la Libération, 33405 Talence, France
| | - Karyn Le Ménach
- Université de Bordeaux, EPOC, UMR 5805 LPTC, 351, Cours de la Libération, 33405 Talence, France
| | - Pierre Labadie
- CNRS, EPOC, UMR 5805 LPTC, 351, Cours de la Libération, 33405 Talence, France
| | - Marie-Hélène Dévier
- Université de Bordeaux, EPOC, UMR 5805 LPTC, 351, Cours de la Libération, 33405 Talence, France
| | - Patrick Pardon
- Université de Bordeaux, EPOC, UMR 5805 LPTC, 351, Cours de la Libération, 33405 Talence, France
| | - Sylvie Augagneur
- Université de Bordeaux, EPOC, UMR 5805 LPTC, 351, Cours de la Libération, 33405 Talence, France
| | - Hélène Budzinski
- CNRS, EPOC, UMR 5805 LPTC, 351, Cours de la Libération, 33405 Talence, France.
| |
Collapse
|
27
|
Wolska J, Cyganowski P, Koźlecki T. Fine polymer imprinted layers for the monitoring of bisphenol A in aqueous solutions. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1385627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Joanna Wolska
- Division of Polymer and Carbonaceous Materials, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Piotr Cyganowski
- Division of Polymer and Carbonaceous Materials, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Tomasz Koźlecki
- Department of Chemical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
28
|
Salgueiro-González N, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D. Trends in analytical methodologies for the determination of alkylphenols and bisphenol A in water samples. Anal Chim Acta 2017; 962:1-14. [DOI: 10.1016/j.aca.2017.01.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
|
29
|
Lopes VSA, Riente RR, da Silva AA, Torquilho DF, Carreira RDS, Marques MRDC. Development of a solid-phase extraction system modified for preconcentration of emerging contaminants in large sample volumes from rivers of the lagoon system in the city of Rio de Janeiro, Brazil. MARINE POLLUTION BULLETIN 2016; 110:572-577. [PMID: 27241881 DOI: 10.1016/j.marpolbul.2016.05.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
A single method modified for monitoring of emerging contaminants in river water was developed for large sample volumes. Water samples from rivers of the lagoon system in the city of Rio de Janeiro (Brazil) were analyzed by the SPE-HPLC-MS-TOF analytical method. Acetaminophen was detected in four rivers in the concentration range of 0.09μgL(-1) to 0.14μgL(-1). Salicylic acid was also found in the four rivers in the concentration range of 1.65μgL(-1) to 4.81μgL(-1). Bisphenol-A was detected in all rivers in the concentration range of 1.37μgL(-1) to 39.86μgL(-1). Diclofenac was found in only one river, with concentration of 0.22μgL(-1). The levels of emerging organic pollutants in the water samples of the Jacarepaguá hydrographical basin are significant. The compounds are not routinely monitored and present potential risks to environmental health.
Collapse
Affiliation(s)
- Vitor Sergio Almeida Lopes
- Environmental Technology Laboratory, Institute of Chemistry, State University of Rio de Janeiro, 20550-900, Rio de Janeiro-RJ, Brazil.
| | - Roselene Ribeiro Riente
- Environmental Technology Laboratory, Institute of Chemistry, State University of Rio de Janeiro, 20550-900, Rio de Janeiro-RJ, Brazil
| | - Alexsandro Araújo da Silva
- Environmental Technology Laboratory, Institute of Chemistry, State University of Rio de Janeiro, 20550-900, Rio de Janeiro-RJ, Brazil
| | - Delma Falcão Torquilho
- Environmental Technology Laboratory, Institute of Chemistry, State University of Rio de Janeiro, 20550-900, Rio de Janeiro-RJ, Brazil
| | - Renato da Silva Carreira
- Chemistry Department, Pontifical Catholic University of Rio de Janeiro, 22451-900, Rio de Janeiro-RJ, Brazil
| | - Mônica Regina da Costa Marques
- Environmental Technology Laboratory, Institute of Chemistry, State University of Rio de Janeiro, 20550-900, Rio de Janeiro-RJ, Brazil
| |
Collapse
|
30
|
Bolzan CM, Caldas SS, Guimarães BS, Primel EG. Dispersive liquid-liquid microextraction based on solidification of floating organic droplet for the determination of triazine and triazoles in mineral water samples. J Sep Sci 2016; 39:3410-7. [DOI: 10.1002/jssc.201600405] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/17/2016] [Accepted: 06/24/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Cátia M. Bolzan
- Laboratório de Análises de Compostos Orgânicos e Metais, Escola de Química e Alimentos; Universidade Federal do Rio Grande - FURG; Rio Grande Rio Grande do Sul State Brazil
| | - Sergiane S. Caldas
- Laboratório de Análises de Compostos Orgânicos e Metais, Escola de Química e Alimentos; Universidade Federal do Rio Grande - FURG; Rio Grande Rio Grande do Sul State Brazil
| | - Bruno S. Guimarães
- Laboratório de Análises de Compostos Orgânicos e Metais, Escola de Química e Alimentos; Universidade Federal do Rio Grande - FURG; Rio Grande Rio Grande do Sul State Brazil
| | - Ednei G. Primel
- Laboratório de Análises de Compostos Orgânicos e Metais, Escola de Química e Alimentos; Universidade Federal do Rio Grande - FURG; Rio Grande Rio Grande do Sul State Brazil
| |
Collapse
|
31
|
Makarova K, Siudem P, Zawada K, Kurkowiak J. Screening of Toxic Effects of Bisphenol A and Products of Its Degradation: Zebrafish (Danio rerio) Embryo Test and Molecular Docking. Zebrafish 2016; 13:466-74. [PMID: 27486708 DOI: 10.1089/zeb.2016.1261] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bisphenol A (BPA) acts as an endocrine-disrupting compound even at a low concentration. Degradation of BPA could lead to the formation of toxic products. In this study, we compare the toxicity of BPA and seven intermediate products of its degradation. The accuracy of three molecular docking programs (Surflex, Autodock, and Autodock Vina) in predicting the binding affinities of selected compounds to human (ERα, ERβ, and ERRγ) and zebrafish (ERα, ERRγA, and ERRγB) estrogen and estrogen-related receptors was evaluated. The docking experiments showed that 4-isopropylphenol could have similar toxicity to that of BPA due to its high affinity to ERRγ and ERRγB and high octanol-water partitioning coefficient. The least toxic compounds were hydroquinone and phenol. Those compounds as well as BPA were screened in the zebrafish (Danio rerio) embryo test. 4-isopropylphenol had the strongest toxic effect on zebrafish embryos and caused 100% lethality shortly after exposure. BPA caused the delay in development, multiple deformations, and low heartbeats (30 bps), whereas hydroquinone had no impact on the development of the zebrafish embryo. Thus, the results of zebrafish screening are in good agreement with our docking experiment. The molecular docking could be used to screen the toxicity of other xenoestrogens and their products of degradation.
Collapse
Affiliation(s)
- Katerina Makarova
- Department of Physical Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, the Medical University of Warsaw , Warsaw, Poland
| | - Pawel Siudem
- Department of Physical Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, the Medical University of Warsaw , Warsaw, Poland
| | - Katarzyna Zawada
- Department of Physical Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, the Medical University of Warsaw , Warsaw, Poland
| | - Justyna Kurkowiak
- Department of Physical Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, the Medical University of Warsaw , Warsaw, Poland
| |
Collapse
|
32
|
Zakari S, Liu H, Li YX, He X, Tong L. Transport and sorption behavior of individual phthalate esters in sandy aquifer: column experiments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15749-15756. [PMID: 27146532 DOI: 10.1007/s11356-016-6660-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
This work aimed to quantify the transport and sorption behavior of four individual phthalate esters (PAEs) in sandy aquifer using column experiments so as to provide important parameters for the prediction and control of PAEs pollution plume in groundwater system. The transport curves of four individual PAEs were simulated with HYDRUS-1D through fitting linear and nonlinear equilibrium (LE/NO), linear and nonlinear, first-order, one-site non-equilibrium (LO/NO), linear and nonlinear, first-order, two-site non-equilibrium (LFO/NFO) sorption models. Simulation results showed that two-site models (LFO and NFO) displayed similar best fittings. The results from LFO model simulation showed that when water flowed 1000 m in sandy aquifer, PAEs with shorter carbon chains (DMP and DEP) transport 31.6 and 22.2 m, respectively. Unexpectedly for the same water transport distance, PAEs with longer carbon chains (DBP and DiBP) transported 40.2 and 60.7 m, respectively, which were faster than DMP and DEP, mainly due to the limited accessibility of type-2 sorption sites. The retardations were mainly caused by the sorption of PAEs on the time-dependent type-2 sites. DBP and DiBP exhibited higher mass transfer speed to and fro type-2 sites but showed lower total sorption coefficient (K) due to the limited accessibility of sorption sites. Coexistence of PAEs and smaller sorbent particles increased total K values of DBP and DiBP due to synergic development of more sorption sites with DMP and DEP.
Collapse
Affiliation(s)
- Sissou Zakari
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Hui Liu
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| | - Yan-Xi Li
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Xi He
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Lei Tong
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| |
Collapse
|
33
|
|
34
|
Ortiz-Colón AI, Piñero-Santiago LE, Rivera NM, Sosa MA. Assessment of Concentrations of Heavy Metals and Phthalates in Two Urban Rivers of the Northeast of Puerto Rico. ACTA ACUST UNITED AC 2016; 6. [PMID: 27148470 PMCID: PMC4852550 DOI: 10.4172/2161-0525.1000353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Urbanization adjacent to rivers has increased in recent years and is considered a source of environmental contamination. The resulting increase in number of urban rivers in highly populated areas, such as the Caribbean island of Puerto Rico, has led to the appearance of synthetic as well as naturally occurring chemicals not previously observed nor regularly monitored in freshwater habitats. Some of these chemicals, such as heavy metals and plasticizers, have been shown to affect endocrine, respiratory, and nervous system function in animals and humans, even at relatively low concentrations. The purpose of this study was to measure concentrations of such emergent contaminants on rivers of urbanized areas on the northeast of Puerto Rico, as one element in the assessment of the impact of urbanism on water quality in these communities. To accomplish this, we used Inductively Coupled Plasma and Gas Chromatography Mass Spectrometry to measure amounts of heavy metals and phthalates, respectively, in superficial water of three rivers of Puerto Rico: Mameyes (non-urban), Río Piedras (urban river without a dam), and La Plata (urban river with a dam). The urban rivers had significantly higher concentrations of heavy metals arsenic, barium, cadmium, manganese, and antimony, when compared with the reference non-urban river. Manganese was the only metal found in concentrations higher than limits established by the EPA for drinking water. Of eight phthalates amenable to measurement with the chosen protocol and instrumentation, only dibutyl phthalate was detected, only in the La Plata river, and at concentrations ranging from 3 to 8 parts-per-billion. These findings suggest that urbanism close to rivers of Puerto Rico is likely having an impact on water quality and thus further study to identify the potential sources, as well as the inclusion of these emergent contaminants on the list of chemicals regularly monitored by government agencies is justified.
Collapse
Affiliation(s)
- Ana I Ortiz-Colón
- Department of Anatomy and Neurobiology, School of Medicine, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico, 00936 USA; Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico, 00901 USA; Puerto Rico Center for Environmental Neuroscience, Medical Sciences Campus, San Juan, Puerto Rico, 00936 USA
| | - Luis E Piñero-Santiago
- Department of Chemistry, Humacao Campus, University of Puerto Rico, Humacao, Puerto Rico, 00792 USA
| | - Nilsa M Rivera
- Department of Anatomy and Neurobiology, School of Medicine, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico, 00936 USA; Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico, 00901 USA; Puerto Rico Center for Environmental Neuroscience, Medical Sciences Campus, San Juan, Puerto Rico, 00936 USA
| | - María A Sosa
- Department of Anatomy and Neurobiology, School of Medicine, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico, 00936 USA; Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico, 00901 USA; Puerto Rico Center for Environmental Neuroscience, Medical Sciences Campus, San Juan, Puerto Rico, 00936 USA
| |
Collapse
|
35
|
Bhandari RK, Deem SL, Holliday DK, Jandegian CM, Kassotis CD, Nagel SC, Tillitt DE, Vom Saal FS, Rosenfeld CS. Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. Gen Comp Endocrinol 2015; 214:195-219. [PMID: 25277515 DOI: 10.1016/j.ygcen.2014.09.014] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/08/2014] [Accepted: 09/20/2014] [Indexed: 12/12/2022]
Abstract
Endocrine disrupting chemicals (EDCs), including the mass-produced component of plastics, bisphenol A (BPA) are widely prevalent in aquatic and terrestrial habitats. Many aquatic species, such as fish, amphibians, aquatic reptiles and mammals, are exposed daily to high concentrations of BPA and ethinyl estradiol (EE2), estrogen in birth control pills. In this review, we will predominantly focus on BPA and EE2, well-described estrogenic EDCs. First, the evidence that BPA and EE2 are detectable in almost all bodies of water will be discussed. We will consider how BPA affects sexual and neural development in these species, as these effects have been the best characterized across taxa. For instance, such chemicals have been in many cases reported to cause sex-reversal of males to females. Even if these chemicals do not overtly alter the gonadal sex, there are indications that several EDCs might demasculinize male-specific behaviors that are essential for attracting a mate. In so doing, these chemicals may reduce the likelihood that these males reproduce. If exposed males do reproduce, the concern is that they will then be passing on compromised genetic fitness to their offspring and transmitting potential transgenerational effects through their sperm epigenome. We will thus consider how diverse epigenetic changes might be a unifying mechanism of how BPA and EE2 disrupt several processes across species. Such changes might also serve as universal species diagnostic biomarkers of BPA and other EDCs exposure. Lastly, the evidence that estrogenic EDCs-induced effects in aquatic species might translate to humans will be considered.
Collapse
Affiliation(s)
- Ramji K Bhandari
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA; Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA
| | - Sharon L Deem
- Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO 63110, USA; Veterinary Clinical Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Dawn K Holliday
- Department of Biology and Environmental Science, Westminster College, Fulton, MO 65251, USA; Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Caitlin M Jandegian
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA; Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO 63110, USA; Masters in Public Health Program, University of Missouri, Columbia, MO 65211, USA
| | | | - Susan C Nagel
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA; Obstetrics, Gynecology, & Women's Health, University of Missouri, Columbia, MO 65211, USA
| | - Donald E Tillitt
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA
| | | | - Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Genetics Area Program Faculty Member, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
36
|
Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.3978] [Citation(s) in RCA: 528] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
37
|
Lenoir A, Touchard A, Devers S, Christidès JP, Boulay R, Cuvillier-Hot V. Ant cuticular response to phthalate pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13446-13451. [PMID: 25012205 DOI: 10.1007/s11356-014-3272-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/01/2014] [Indexed: 06/03/2023]
Abstract
Phthalates are common atmospheric contaminants used in the plastic industry. Ants have been shown to constitute good bioindicators of phthalate pollution. Hence, phthalates remain trapped on ant cuticles which are mostly coated with long-chain hydrocarbons. In this study, we artificially contaminated Lasius niger ants with four phthalates: dibutyl phthalate (DBP), diisobutyl phthalate (DiBP), di(2-ethylhexyl) phthalate (DEHP), and benzyl butyl phthalate (BBP). The first three have previously been found on ants in nature in Touraine (France), while the fourth has not. The four phthalates disappeared rapidly (less than 5 days) from the cuticles of live ants. In contrast, on the cuticles of dead ants, DEHP quantities remained unchanged over time. These results indicate that phthalates are actively absorbed by the cuticles of live ants. Cuticular absorption of phthalates is nonspecific because eicosane, a nonnatural hydrocarbon on L. niger cuticle, was similarly absorbed. Ants are important ecological engineers and may serve as bioindicators of ecosystem health. We also suggest that ants and more generally terrestrial arthropods may contribute to the removal of phthalates from the local environment.
Collapse
Affiliation(s)
- Alain Lenoir
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université François Rabelais, 37200, Tours, France,
| | | | | | | | | | | |
Collapse
|
38
|
Domínguez-Morueco N, González-Alonso S, Valcárcel Y. Phthalate occurrence in rivers and tap water from central Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 500-501:139-146. [PMID: 25217752 DOI: 10.1016/j.scitotenv.2014.08.098] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/26/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study is to evaluate the presence and concentrations of the main phthalates in water from the Jarama and Manzanares rivers in the region of Madrid (RM, Central Spain), the most densely populated region of Spain, and to determine the possible oestrogenic activity based on found phthalate concentration. The presence of phthalates in major supply drinking water areas of the RM was also analysed, thus allowing a preliminary assessment of the health risks resulting from the concentrations obtained. The results of this study show the presence of the three (dimethyl phthalate (DMP), diethyl phthalate (DEP) di-n-butyl phthalate (DBP)) of five phthalates studied (dimethyl phthalate (DMP), diethyl phthalate (DEP), di-(2-ethylhexyl) phthalate (DEHP), benzyl-butyl phthalate (BBP) and di-n-butyl phthalate (DBP)). The DBP was found in both river and tap water samplers, whereas DMP and DEP were found in only drinking water samples. The DBP was found to make the highest average contribution to pollution in both river and tap water. The DEHP was not found in both the river and tap water because it is one of the most regulated phthalates. The highest phthalate contamination was found in the Manzanares river and in those areas that receive treated water from the Tagus river. The phthalates found in river and tap water in the RM do not represent a potential oestrogenic risk for the aquatic environment or humans. A preliminary risk assessment suggested that the risk of exposure to phthalates from tap water in this study is acceptable, although continuous monitoring of the presence of these substances in both drinking and river water should be undertaken to detect possible increases in their concentrations. This is the first study to analyse the presence of phthalates in both rivers and drinking water of the centre of Spain.
Collapse
Affiliation(s)
- N Domínguez-Morueco
- Research Group in Environmental Health and Ecotoxicology (ToxAmb), Rey Juan Carlos University, Spain.
| | - S González-Alonso
- Research Group in Environmental Health and Ecotoxicology (ToxAmb), Rey Juan Carlos University, Spain
| | - Y Valcárcel
- Research Group in Environmental Health and Ecotoxicology (ToxAmb), Rey Juan Carlos University, Spain; Departments of Medicine and Cirugy, Psychology, Preventive Medicine and Public Health and Immunology Medical Microbiology, Faculty of Health Sciences, Rey Juan Carlos University, Spain.
| |
Collapse
|
39
|
Azzouz A, Ballesteros E. Trace analysis of endocrine disrupting compounds in environmental water samples by use of solid-phase extraction and gas chromatography with mass spectrometry detection. J Chromatogr A 2014; 1360:248-57. [DOI: 10.1016/j.chroma.2014.07.059] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/04/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
|
40
|
Al-Saleh I, Elkhatib R. Analysis of phthalates residues in apple juices produced in Saudi Arabia. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2014. [DOI: 10.1007/s11694-014-9202-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Gu YY, Yu XJ, Peng JF, Chen SB, Zhong YY, Yin DQ, Hu XL. Simultaneous solid phase extraction coupled with liquid chromatography tandem mass spectrometry and gas chromatography tandem mass spectrometry for the highly sensitive determination of 15 endocrine disrupting chemicals in seafood. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 965:164-72. [DOI: 10.1016/j.jchromb.2014.06.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/20/2014] [Accepted: 06/21/2014] [Indexed: 11/28/2022]
|
42
|
Fierens T, Cornelis C, Standaert A, Sioen I, De Henauw S, Van Holderbeke M. Modelling the environmental transfer of phthalates and polychlorinated dibenzo-p-dioxins and dibenzofurans into agricultural products: the EN-forc model. ENVIRONMENTAL RESEARCH 2014; 133:282-293. [PMID: 24981827 DOI: 10.1016/j.envres.2014.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/01/2014] [Accepted: 06/02/2014] [Indexed: 06/03/2023]
Abstract
This study aimed to predict the occurrence of four phthalates, two polychlorinated dibenzo-p-dioxins and two polychlorinated dibenzofurans in environmental and agricultural media from observed concentrations in air, sludge, manure and concentrate. For the environmental and agricultural fate modelling, the newly developed multimedia model "EN-forc" (ENvironmental Food transfer model for ORganic Contaminants) was used. To validate EN-forc calculations, the predicted concentrations of the considered chemicals in soil, groundwater, drinking water, plants and animal products were compared with both observed and modelled concentrations available in the literature. For the majority of the considered matrices, predicted phthalate and dioxin levels differed one order of magnitude at most with observed concentrations. Unfortunately, the transfer models implemented in EN-forc lacked power to predict levels of some phthalates and dioxins in pasture, root crops and/or tubers. Concentrations of phthalates and dioxins in offal could not be predicted due to the absence of suitable models that have an acceptable level of complexity to implement in EN-forc. For this type of food products, further research is highly encouraged. In a next step, the modelling framework of EN-forc will be extended in order to be able to predict human dietary exposure to organic chemicals like phthalates and dioxins.
Collapse
Affiliation(s)
- T Fierens
- Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium; Ghent University, Department of Public Health, Faculty of Medicine and Health Sciences, De Pintelaan 185, B-9000 Ghent, Belgium.
| | - C Cornelis
- Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium
| | - A Standaert
- Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium
| | - I Sioen
- Ghent University, Department of Public Health, Faculty of Medicine and Health Sciences, De Pintelaan 185, B-9000 Ghent, Belgium; Research Foundation Flanders (FWO), Egmontstraat 5, B-1000 Brussels, Belgium
| | - S De Henauw
- Ghent University, Department of Public Health, Faculty of Medicine and Health Sciences, De Pintelaan 185, B-9000 Ghent, Belgium; University College Ghent, Department of Nutrition and Dietetics, Faculty of Health Care "Vesalius", Keramiekstraat 80, B-9000 Ghent, Belgium
| | - M Van Holderbeke
- Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium
| |
Collapse
|
43
|
Effect of bottling and storage on the migration of plastic constituents in Spanish bottled waters. Food Chem 2014; 156:73-80. [DOI: 10.1016/j.foodchem.2014.01.075] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/30/2013] [Accepted: 01/22/2014] [Indexed: 11/20/2022]
|
44
|
Vulliet E, Tournier M, Vauchez A, Wiest L, Baudot R, Lafay F, Kiss A, Cren-Olivé C. Survey regarding the occurrence of selected organic micropollutants in the groundwaters of overseas departments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:7512-7521. [PMID: 24595746 DOI: 10.1007/s11356-014-2619-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
To collect a complete dataset regarding the occurrence of organic substances in groundwater, this study presents the examination of 66 organic contaminants in the groundwater of overseas departments, including pesticides, pharmaceutical compounds, hormones and some industrial substances. The selective and sensitive analytical methods are described. These techniques begin with solid-phase extraction (SPE) followed by analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-ToF-MS). The paper summarises the analytical results from 40 sampling points collected during two campaigns in Guadeloupe, Martinique, Reunion, Mayotte and Guiana, representing 80 samples. Of the 66 target substances, 36 were determined at least once. Among the most frequently detected are bisphenol A (frequency, 96%; max., 7,400 ng/L), caffeine (frequency, 91%; max., 1,240 ng/L), pentachlorophenol (frequency, 55%; max., 418 ng/L), and carbamazepine (frequency, 56%; max., 22 ng/L). The results do not put in evidence that the origin of the sample or climatic characteristics of these regions influence the dilution and release of micropollutants.
Collapse
Affiliation(s)
- Emmanuelle Vulliet
- Institut des Sciences Analytiques, UMR5280 CNRS (Equipe TRACES), Université de Lyon, Université Lyon 1, ENS-Lyon, 5 rue de la Doua, 69100, Villeurbanne, France,
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Esteban S, Gorga M, González-Alonso S, Petrovic M, Barceló D, Valcárcel Y. Monitoring endocrine disrupting compounds and estrogenic activity in tap water from Central Spain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:9297-9310. [PMID: 24728544 DOI: 10.1007/s11356-014-2847-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/27/2014] [Indexed: 06/03/2023]
Abstract
The aims of this study are to investigate the presence of 30 substances known or thought to act as endocrine disrupting compounds in tap water from the main water supply areas for region of Madrid, to determine the total estrogenic activity of the samples analysed and to estimate the health risk for the population resulting from those compounds found at detectable concentrations. To this end, a one-off composite sampling was performed in August 2012 in which six tap water samples were collected from private residences in the drinking water supply network of the region of Madrid. A total of 14 of the 30 endocrine disruptors analysed were found at concentrations ranging from 0.3 to 165 ng/L. The organophosphorus flame retardants were detected at the highest concentrations followed by the plasticizer bisphenol A, alkylphenols, anticorrosion agents and preservatives. Tap water in the region of Madrid is contaminated with traces (ng/L) of compounds with endocrine disrupting properties. Although the concentrations of endocrine disrupting compounds obtained are too low to be able to confirm a public health risk, and no risk has been detected upon evaluation, it should be remembered that these compounds act at very low doses and that their effects may only appear in the long term.
Collapse
Affiliation(s)
- S Esteban
- Environmental Health and Ecotoxicology Research Group (ToxAmb), Rey Juan Carlos University, Avda. Atenas, s/n., 28922, Alcorcón, Madrid, Spain,
| | | | | | | | | | | |
Collapse
|
46
|
Singh B, Kumar A, Malik AK. Recent Advances in Sample Preparation Methods for Analysis of Endocrine Disruptors from Various Matrices. Crit Rev Anal Chem 2014; 44:255-69. [DOI: 10.1080/10408347.2013.859981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Köck-Schulmeyer M, Ginebreda A, Postigo C, Garrido T, Fraile J, López de Alda M, Barceló D. Four-year advanced monitoring program of polar pesticides in groundwater of Catalonia (NE-Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:1087-1098. [PMID: 24239830 DOI: 10.1016/j.scitotenv.2013.10.079] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 06/02/2023]
Abstract
Pesticide contamination of groundwater is of paramount importance because it is the most sensitive and the largest body of freshwater in the European Union. In this paper, an isotopic dilution method based on on-line solid phase extraction-liquid chromatography (electrospray)-tandem mass spectrometry (SPE-LC(ESI)-MS/MS) was used for the analysis of 22 pesticides in groundwater. Results were evaluated from monitoring 112 wells and piezometers coming from 29 different aquifers located in 18 ground water bodies (GWBs), from Catalonia, Spain, for 4 years as part of the surveillance and operational monitoring programs conducted by the Catalan Water Agency. The analytical method developed allows the determination of the target pesticides (6 triazines, 4 phenylureas, 4 organophosphorous, 1 anilide, 2 chloroacetanilides, 1 thiocarbamate, and 4 acid herbicides) in groundwater with good sensitivity (limits of detection <5 ng/L), accuracy (relative recoveries between 85 and 116%, except for molinate), and repeatability (RSD<23%), and in a fully automated way. The most ubiquitous compounds were simazine, atrazine, desethylatrazine and diuron. Direct relation between frequency of detection of each target compound and Groundwater Ubiquity Score index (GUS index) is observed. Desethylatrazine and deisopropylatrazine, metabolites of atrazine and simazine, respectively, presented the highest mean concentrations. Compounds detected in less than 5% of the samples were cyanazine, molinate, fenitrothion and mecoprop. According to the Directive 2006/118/EC, 13 pesticides have individual values above the requested limits (desethylatrazine, atrazine and terbuthylazine lead the list) and 14 samples have total pesticide levels above 500 ng/L. The GWB with the highest levels of total pesticides is located in Lleida (NE-Spain), with 9 samples showing total pesticide levels above 500 ng/L. Several factors such as regulation of the use of pesticides, type of activities in the area, and irrigation were discussed in relation to the observed levels of pesticides.
Collapse
Affiliation(s)
- Marianne Köck-Schulmeyer
- Water and Soil Quality Research Group, Dept. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Antoni Ginebreda
- Water and Soil Quality Research Group, Dept. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cristina Postigo
- Water and Soil Quality Research Group, Dept. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Teresa Garrido
- Catalan Water Agency, Provença 204-208, 08036 Barcelona, Spain
| | - Josep Fraile
- Catalan Water Agency, Provença 204-208, 08036 Barcelona, Spain
| | - Miren López de Alda
- Water and Soil Quality Research Group, Dept. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Damià Barceló
- Water and Soil Quality Research Group, Dept. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|
48
|
Guart A, Calabuig I, Lacorte S, Borrell A. Continental bottled water assessment by stir bar sorptive extraction followed by gas chromatography-tandem mass spectrometry (SBSE-GC-MS/MS). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2846-2855. [PMID: 24146319 DOI: 10.1007/s11356-013-2177-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/16/2013] [Indexed: 06/02/2023]
Abstract
This study was aimed to determine the presence of 69 organic contaminants in 77 representative bottled waters collected from 27 countries all over the world. All water samples were contained in polyethylene terephthalate bottles. Target compounds were (1) environmental contaminants (including 13 polycyclic aromatic hydrocarbons (PAHs), 31 pesticides including organochlorine (OCPs), organophosphorus, and pyrethroids; 7 polychlorinated biphenyls (PCBs); and 7 triazines) and (2) plasticizers (including 6 phthalates and 5 other compounds). Samples were analyzed by stir bar sorptive extraction followed by gas chromatography-tandem mass spectrometry. PAHs, OCPs, PCBs, and triazines, which are indicators of groundwater pollution, were not detected in most of the samples, except for naphthalene (0.005-0.202 μg/L, n = 16). On the other hand, plastic components were detected in 77 % of the samples. Most frequently detected compounds were dimethyl phthalate and benzophenone at concentrations of 0.005-0.125 (n = 41) and 0.014-0.921 (n = 32), respectively. Levels detected are discussed in terms of contamination origin and geographical distribution. Target compounds were detected at low concentrations. Results obtained showed the high quality of bottled water in the different countries around the world.
Collapse
Affiliation(s)
- Albert Guart
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Catalonia, Spain
| | | | | | | |
Collapse
|
49
|
Snedeker SM, Hay AG. The Alkylphenols Nonylphenol and Octylphenol in Food Contact Materials and Household Items: Exposure and Health Risk Considerations. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2014. [DOI: 10.1007/978-1-4471-6500-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Guart A, Wagner M, Mezquida A, Lacorte S, Oehlmann J, Borrell A. Migration of plasticisers from Tritan™ and polycarbonate bottles and toxicological evaluation. Food Chem 2013; 141:373-80. [DOI: 10.1016/j.foodchem.2013.02.129] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/09/2012] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
|