1
|
Li Q, Shi W. Effects of sediment oxidation on phosphorus transformation in three large shallow eutrophic lakes in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25925-25932. [PMID: 31902073 DOI: 10.1007/s11356-019-07510-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Oxidation of surface sediments is an important means for altering phosphorus (P) exchanges across sediment-water interface (SWI) in shallow lakes. In this study, the potential and composition of regenerated oxidation capacity (OC) of surface sediments were evaluated in three large shallow lakes (Tai Lake, Chao Lake, and Dianchi Lake) in China; the transformation of sedimentary P was quantified through P fractionation scheme. The composition of the regenerated OC differed among these three lakes, with Fe(III) and SO42- dominant in Dianchi Lake, Mn(IV) and Fe(III) in Chao Lake and Tai Lake. Oxidation of sediments enhanced the transformation of sedimentary P and altered P exchanges across the SWI. In Chao Lake, the HCl-P was transformed to BD-P; in Tai Lake, the NaOH-P was involved too, and transformed to BD-P; whereas in Dianchi Lake, an increase in NH4Cl-P was also observed except for the transformation from HCl-P to BD-P. The sediment-to-water flux of P was enhanced with 0.17 mg/g DW in Dianchi Lake and 0.08 mg/g DW in Chao Lake, while a contrary water-to-sediment flux of P was observed in Tai Lake, reaching 0.01 mg/g DW. This study advances our knowledge on the impacts of sediment oxidation on P cycles in lakes, which will be beneficial to eutrophication control.
Collapse
Affiliation(s)
- Qingman Li
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, 430072, China
| | - Wenqing Shi
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210029, China.
| |
Collapse
|
2
|
Badiou P, Page B, Akinremi W. Phosphorus Retention in Intact and Drained Prairie Wetland Basins: Implications for Nutrient Export. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:902-913. [PMID: 30025042 DOI: 10.2134/jeq2017.08.0336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Draining of geographically isolated (no defined inlet or outlet) freshwater mineral soil wetlands has likely converted areas that acted historically as important P sinks to sources of P. To explore the role of wetland drainage on nonpoint-source P pollution, differences in the chemical characteristics and P sorption parameters of drained and intact wetlands were investigated in a small watershed situated in the Prairie Pothole Region of southwestern Manitoba, Canada. Chemical characteristics and P sorption parameters varied across landscape positions, particularly for landscape positions that were submerged. Intact wetlands had slightly higher concentrations of organic and total P relative to drained wetlands, which is indicative of their P trapping capacity. More importantly, the maximum P sorption capacity and P buffering capacity of intact wetlands were 3.6 (1752 vs. 492 mg kg) and 17 (1394 vs. 84 L kg) times greater than those in drained wetlands. Conversely, equilibrium P concentrations and bioavailable P concentrations in drained wetlands were an order of magnitude greater than those in intact prairie wetlands. Our study suggests that intact prairie wetlands may be effective sinks for P. As a result, prairie wetlands may play an important role in mitigating nonpoint-source pollution. Conversely, our findings suggest that drained prairie wetlands are potentially a high risk for P export and should be treated as important critical source areas within prairie watersheds.
Collapse
|
3
|
Zhou Z, Xu P, Cao X, Zhou Y, Song C. Efficiency promotion and its mechanisms of simultaneous nitrogen and phosphorus removal in stormwater biofilters. BIORESOURCE TECHNOLOGY 2016; 218:842-849. [PMID: 27428301 DOI: 10.1016/j.biortech.2016.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/04/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
Stromwater biofilter technology was greatly improved through adding iron-rich soil, plant detritus and eutrophic lake sediment. Significant ammonium and phosphate removal efficiencies (over 95%) in treatments with iron-rich soil were attributed to strong adsorption capability resulting in high available phosphorus (P) in media, supporting the abundance and activity of nitrifiers and denitrifiers as well as shaping compositions, which facilitated nitrogen (N) removal. Aquatic and terrestrial plant detritus was more beneficial to nitrification and denitrification by stimulating the abundance and activity of nitrifiers and denitrifiers respectively, which increased total nitrogen (TN) removal efficiencies by 17.6% and 22.5%. In addition, bioaugmentation of nitrifiers and denitrifiers from eutrophic sediment was helpful to nutrient removal. Above all, combined application of these materials could reach simultaneously maximum effects (removal efficiencies of P, ammonium and TN were 97-99%, 95-97% and 60-63% respectively), suggesting reasonable selection of materials has important contribution and application prospect in stormwater biofilters.
Collapse
Affiliation(s)
- Zijun Zhou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Peng Xu
- College of Resources and Environment, Huazhong Agriculture University, Wuhan 430070, PR China
| | - Xiuyun Cao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yiyong Zhou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Chunlei Song
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
4
|
Chen C, Zhong JC, Yu JH, Shen QS, Fan CX, Kong FX. Optimum dredging time for inhibition and prevention of algae-induced black blooms in Lake Taihu, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14636-14645. [PMID: 27072029 DOI: 10.1007/s11356-016-6627-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
Dredging, which is the removal of polluted surface sediments from a water body, is an effective means of preventing the formation of algae-induced black blooms. However, an inappropriate dredging time may contribute to rather than inhibit the formation of black blooms. To determine the optimum dredging time, four treatments were simulated with sediment samples collected from Lake Taihu: dredging in January 2014 (DW), April 2014 (DA), July 2014 (DS), and no dredging (UD). Results showed that typical characteristics associated with black blooms, such as high levels of nutrients (NH4 (+)-N and PO4 (3-)-P), Fe(2+), ∑S(2-) ([HS(-)] + [S(2-)]), and volatile organic sulfur compounds (VOSCs), including dimethyl sulfide (DMS), dimethyl disulfide (DMDS), and dimethyl trisulfide (DMTS), were more effectively suppressed in the water column by DW treatment than by UD treatment and the other two dredging treatments. The highest concentrations of NH4 (+)-N and PO4 (3-)-P in the UD water column were 4.09 and 4.03 times, respectively, those in the DW water column. DMS levels in the UD and DS water columns were significantly higher (p < 0.05) than those in the DW water column, but DMDS and DMTS levels were not significantly different between the treatments. After several months of dredging, surface sediments of the DW and DA treatments were well oxidized, and concentrations of Fe(2+) and ∑S(2-) were lower than those in UD and DS treatments because of material circulation between sediments and the water column. Water content, which is important for the transport of matter to the overlying water, was lower in the dredged sediments than in the undredged sediments. These factors can suppress the release of Fe(2+) and ∑S(2-) into the water column, thereby inhibiting the formation of black blooms. Black coloration occurred in the UD water column on the seventh day, 2 days later, and earlier, respectively, than the DW and DS water columns and almost on the same day as in the DA water column. This phenomenon is mainly attributed to the oxidation of the new sediment surface in the DW and DA water columns, suppressing the release of sulfur into the water column, because of a long incubation period. Thus, dredging in the winter can prevent the formation of black blooms, while dredging in summer may contribute to them.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ji-Cheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
| | - Ju-Hua Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qiu-Shi Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Cheng-Xin Fan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Fan-Xiang Kong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| |
Collapse
|
5
|
Sediment type affects competition between a native and an exotic species in coastal China. Sci Rep 2014; 4:6748. [PMID: 25339574 PMCID: PMC4206839 DOI: 10.1038/srep06748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 10/02/2014] [Indexed: 12/03/2022] Open
Abstract
Different types of sediments in salt marsh have different physical and chemical characters. Thus sediment type plays a role in plant competition and growth in salt marsh ecosystems. Spartina anglica populations have been increasingly confined to upper elevation gradients of clay, and the niche sediment has changed. Because the niches of S. anglica and the native species Scirpus triqueter overlap, we conducted a greenhouse experiment to test the hypothesis that plant competition has changed under different types of sediments. Biomass and asexual reproduction were analyzed, and inter- and intraspecific competition was measured by log response ratio for the two species in both monoculture and combination under three sediment types (sand, clay and mixture of sand and clay). For S. anglica, biomass, ramet number and rhizome length in combination declined significantly compared with those in monoculture, and the intensity of interspecific competition was significantly higher than that of intraspecific competition under all sediments. For S. triqueter, the intensities of intra- and interspecific competition were not significantly different. This indicates that S. triqueter exerts an asymmetric competitive advantage over S. anglica across all sediments, but especially clay. Thus the sediment type changes competition between S. anglica and S. triqueter.
Collapse
|