1
|
Liu S, Liu H, Chen R, Ma Y, Yang B, Chen Z, Liang Y, Fang J, Xiao Y. Role of Two Plant Growth-Promoting Bacteria in Remediating Cadmium-Contaminated Soil Combined with Miscanthus floridulus (Lab.). PLANTS 2021; 10:plants10050912. [PMID: 34063227 PMCID: PMC8147505 DOI: 10.3390/plants10050912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/19/2022]
Abstract
Miscanthus spp. are energy plants and excellent candidates for phytoremediation approaches of metal(loid)s-contaminated soils, especially when combined with plant growth-promoting bacteria. Forty-one bacterial strains were isolated from the rhizosphere soils and roots tissue of five dominant plants (Artemisia argyi Levl., Gladiolus gandavensis Vaniot Houtt, Boehmeria nivea L., Veronica didyma Tenore, and Miscanthus floridulus Lab.) colonizing a cadmium (Cd)-contaminated mining area (Huayuan, Hunan, China). We subsequently tested their plant growth-promoting (PGP) traits (e.g., production of indole-3-acetic acid, siderophore, and 1-aminocyclopropane-1-carboxylate deaminase) and Cd tolerance. Among bacteria, two strains, Klebsiella michiganensis TS8 and Lelliottia jeotgali MR2, presented higher Cd tolerance and showed the best results regarding in vitro growth-promoting traits. In the subsequent pot experiments using soil spiked with 10 mg Cd·kg−1, we investigated the effects of TS8 and MR2 strains on soil Cd phytoremediation when combined with M. floridulus (Lab.). After sixty days of planting M. floridulus (Lab.), we found that TS8 increased plant height by 39.9%, dry weight of leaves by 99.1%, and the total Cd in the rhizosphere soil was reduced by 49.2%. Although MR2 had no significant effects on the efficiency of phytoremediation, it significantly enhanced the Cd translocation from the root to the aboveground tissues (translocation factor > 1). The combination of K. michiganensis TS8 and M. floridulus (Lab.) may be an effective method to remediate Cd-contaminated soils, while the inoculation of L. jeotgali MR2 may be used to enhance the phytoextraction potential of M. floridulus.
Collapse
Affiliation(s)
- Shuming Liu
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Hongmei Liu
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Rui Chen
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Yong Ma
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Bo Yang
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Zhiyong Chen
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
| | - Yunshan Liang
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
| | - Jun Fang
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
- Correspondence: (J.F.); (Y.X.)
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
- Correspondence: (J.F.); (Y.X.)
| |
Collapse
|
2
|
Kandasamy S, Liu EYR, Patterson G, Saldias S, Ali S, Lazarovits G. Introducing key microbes from high productive soil transforms native soil microbial community of low productive soil. Microbiologyopen 2019; 8:e895. [PMID: 31250991 PMCID: PMC6813456 DOI: 10.1002/mbo3.895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 11/11/2022] Open
Abstract
This study aimed to understand the changes in rhizosphere microbial structure and diversity of an average corn yielding field site soil with the introduced microbial candidates from a high‐yielding site. Soils used in this study were from two growers’ fields located in Dunnville, Ontario, Canada, where one of the farms has an exceptional high corn yield (G‐site soil; ca 20 tons/acre) and the other yields an average crop (H‐site soil; 12 tons/acre) (8 years of unpublished A & L data). In growth room experiments using wheat as the indicator crop, calcium alginate beads with microbes composed of Azospirillum lipoferum, Rhizobium leguminosarum, Burkholderia ambifaria, Burkholderia graminis, Burkholderia vietnamiensis, Pseudomonas lurida, Exiguobacterium acetylicum, Kosakonia cowanii, and Paenibacillus polymyxa was introduced into the soil at planting to the average‐yielding soil. These bacteria had been isolated from the high‐yielding farm soil. Among the nine microbial candidates tested, three (P. polymyxa, E. acetylicum and K. cowanii) significantly impacted the plant health and biometrics in addition to microbial richness and diversity, where the microbial profile became very similar to the high productive G‐site soil. One hundred and forty‐two bacterial terminal restriction fragments (TRFs) were involved in the community shift and 48 of them showed significant correlation to several interacting soil factors. This study indicates the potential of shifting microbial profiles of average‐yielding soils by introducing key candidates from highly productive soils to increase biological soil health.
Collapse
Affiliation(s)
- Saveetha Kandasamy
- A&L Biologicals, Agroecological Research Services Centre, London, Canada
| | - Elaine Yi Ran Liu
- A&L Biologicals, Agroecological Research Services Centre, London, Canada.,Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Greg Patterson
- A&L Biologicals, Agroecological Research Services Centre, London, Canada
| | - Soledad Saldias
- A&L Biologicals, Agroecological Research Services Centre, London, Canada
| | - Shimaila Ali
- A&L Biologicals, Agroecological Research Services Centre, London, Canada
| | - George Lazarovits
- A&L Biologicals, Agroecological Research Services Centre, London, Canada
| |
Collapse
|
3
|
Sun W, Qian X, Gu J, Wang XJ, Li Y, Duan ML. Effects of inoculation with organic-phosphorus-mineralizing bacteria on soybean (Glycine max) growth and indigenous bacterial community diversity. Can J Microbiol 2017; 63:392-401. [PMID: 28177785 DOI: 10.1139/cjm-2016-0758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Three different organic-phosphorus-mineralizing bacteria (OPMB) strains were inoculated to soil planted with soybean (Glycine max), and their effects on soybean growth and indigenous bacterial community diversity were investigated. Inoculation with Pseudomonas fluorescens Z4-1 and Brevibacillus agri L7-1 increased organic phosphorus degradation by 22% and 30%, respectively, compared with the control at the mature stage. Strains P. fluorescens Z4-1 and B. agri L7-1 significantly improved the soil alkaline phosphatase activity, average well color development, and the soybean root activity. Terminal restriction fragment length polymorphism analysis demonstrated that P. fluorescens Z4-1 and B. agri L7-1 could persist in the soil at relative abundances of 2.0%-6.4% throughout soybean growth. Thus, P. fluorescens Z4-1 and B. agri L7-1 could potentially be used in organic-phosphorus-mineralizing biofertilizers. OPMB inoculation altered the genetic structure of the soil bacterial communities but had no apparent influence on the carbon source utilization profiles of the soil bacterial communities. Principal components analysis showed that the changes in the carbon source utilization profiles of bacterial community depended mainly on the plant growth stages rather than inoculation with OPMB. The results help to understand the evolution of the soil bacterial community after OPMB inoculation.
Collapse
Affiliation(s)
- Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiao-Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Man-Li Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
4
|
Medas D, De Giudici G, Casu MA, Musu E, Gianoncelli A, Iadecola A, Meneghini C, Tamburini E, Sprocati AR, Turnau K, Lattanzi P. Microscopic processes ruling the bioavailability of Zn to roots of Euphorbia pithyusa L. pioneer plant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1400-1408. [PMID: 25568986 DOI: 10.1021/es503842w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Euphorbia pithyusa L. was used in a plant growth-promoting assisted field trial experiment. To unravel the microscopic processes at the interface, thin slices of E. pithyusa roots were investigated by micro-X-ray fluorescence mapping. Roots and rhizosphere materials were examined by X-ray absorption spectroscopy at the Zn K-edge, X-ray diffraction, and scanning electron microscopy. Results indicate some features common to all the investigated samples. (i) In the rhizosphere of E. pithyusa, Zn was found to exist in different phases. (ii) Si and Al are mainly concentrated in a rim at the epidermis of the roots. (iii) Zn is mostly stored in root epidermis and does not appear to be coordinated to organic molecules but mainly occurs in mineral phases such as Zn silicates. We interpreted that roots of E. pithyusa significantly promote mineral evolution in the rhizosphere. Concomitantly, the plant uses Si and Al extracted by soil minerals to build a biomineralization rim, which can capture Zn. This Zn silicate biomineralization has relevant implications for phytoremediation techniques and for further biotechnology development, which can be better designed and developed after specific knowledge of molecular processes ruling mineral evolution and biomineralization processes has been gained.
Collapse
Affiliation(s)
- Daniela Medas
- Department of Chemical and Geological Sciences, University of Cagliari , 09127 Cagliari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|