1
|
Kohira Y, Fentie D, Lewoyehu M, Wutisirirattanachai T, Gezahegn A, Addisu S, Sato S. Mitigation of ammonia volatilization from organic and inorganic nitrogen sources applied to soil using water hyacinth biochars. CHEMOSPHERE 2024; 363:142872. [PMID: 39019190 DOI: 10.1016/j.chemosphere.2024.142872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/13/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
The recent global population explosion has increased people's food demand. To meet this demand, huge amounts of nitrogen (N) fertilizer have been applied in the worldwide. However, ammonia (NH3) volatilization is one of the primary factors of N loss from soil after N application causing decrease crop N utilization efficiency and productivity. Incubation experiments were conducted on an acidic clayey soil with two different N sources (urea and anaerobic digestion effluent; ADE), two differently-produced biochars, and three biochar application rates (0%, 0.25%, and 1.0% w/w). Ammonia volatilization was lower from urea (14.0-23.5 mg N kg-1) and ADE (11.3-21.0 mg N kg-1) with biochar application than those without biochar (40.1 and 26.2 mg N kg-1 from urea and ADE alone, respectively). Biochar application significantly mitigated volatilization and reduction percentages for urea and ADE were 40%-64% and 18%-55%, respectively. 1.0% biochar application mitigated volatilization significantly compared to 0.25% application regardless of N source and biochar types. Possible mechanism for volatilization mitigation for urea and ADE were increased N immobilization by soil microorganisms and accelerated net nitrification rate due to increased soil nitrifying bacteria, respectively. Overall, our results clarified different mechanisms for N volatilization mitigation from different (inorganic vs. organic) N sources with biochar application.
Collapse
Affiliation(s)
- Yudai Kohira
- Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji-shi, Tokyo, 192-8577, Japan.
| | - Desalew Fentie
- Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji-shi, Tokyo, 192-8577, Japan; College of Agriculture Food and Climate Science, Injibara University, Injibara, Ethiopia, P.O. Box 40.
| | - Mekuanint Lewoyehu
- Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji-shi, Tokyo, 192-8577, Japan; College of Science, Bahir Dar University, Bahir Dar, Ethiopia, P.O. Box 79.
| | - Tassapak Wutisirirattanachai
- Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji-shi, Tokyo, 192-8577, Japan.
| | - Ashenafei Gezahegn
- College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia, P.O. Box 79; College of Agriculture and Environmental Sciences, Debark University, Debark, Ethiopia, P.O. Box 90.
| | - Solomon Addisu
- College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia, P.O. Box 79.
| | - Shinjiro Sato
- Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji-shi, Tokyo, 192-8577, Japan.
| |
Collapse
|
2
|
Zhao Y, Ling N, Liu X, Li C, Jing X, Hu J, Rui J. Altitudinal patterns of alpine soil ammonia-oxidizing community structure and potential nitrification rate. Appl Environ Microbiol 2024; 90:e0007024. [PMID: 38385702 PMCID: PMC11206213 DOI: 10.1128/aem.00070-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Nitrogen availability limits the net primary productivity in alpine meadows on the Qinghai-Tibetan Plateau, which is regulated by ammonia-oxidizing microorganisms. However, little is known about the elevational patterns of soil ammonia oxidizers in alpine meadows. Here, we investigated the potential nitrification rate (PNR), abundance, and community diversity of soil ammonia-oxidizing microorganisms along the altitudinal gradient between 3,200 and 4,200 m in Qinghai-Tibetan alpine meadows. We found that both PNR and amoA gene abundance declined from 3,400 to 4,200 m but lowered at 3,200 m, possibly due to intense substrate competition and biological nitrification inhibition from grasses. The primary contributors to soil nitrification were ammonia-oxidizing archaea (AOA), and their proportionate share of soil nitrification increased with altitude in comparison to ammonia-oxidizing bacteria (AOB). The alpha diversity of AOA increased by higher temperature and plant richness at low elevations, while decreased by higher moisture and low legume biomass at middle elevations. In contrast, the alpha diversity of AOB increased along elevation. The elevational patterns of AOA and AOB communities were primarily driven by temperature, soil moisture, and vegetation. These findings suggest that elevation-induced climate changes, such as shifts in temperature and water conditions, could potentially alter the soil nitrification process in alpine meadows through changes in vegetation and soil properties, which provide new insights into how soil ammonia oxidizers respond to climate change in alpine meadows.IMPORTANCEThe importance of this study is revealing that elevational patterns and nitrification contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities were primarily driven by temperature, soil moisture, and vegetation. Compared to AOB, the relative contribution of AOA to soil nitrification increased at higher elevations. The research highlights the potential impact of elevation-induced climate change on nitrification processes in alpine meadows, mediated by alterations in vegetation and soil properties. By providing new insights into how ammonia oxidizers respond to climate change, this study contributes valuable knowledge to the field of microbial ecology and helps predict ecological responses to environmental changes in alpine meadows.
Collapse
Affiliation(s)
- Yuwei Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ning Ling
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Chao Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xin Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jingjing Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Junpeng Rui
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Marchuk S, Tait S, Sinha P, Harris P, Antille DL, McCabe BK. Biosolids-derived fertilisers: A review of challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162555. [PMID: 36889394 DOI: 10.1016/j.scitotenv.2023.162555] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Soil application of biosolids as an organic fertiliser continues to be a cost-effective way to beneficially utilise its carbon and nutrient contents to maintain soil fertility. However, ongoing concerns over microplastics and persistent organic contaminants means that land-application of biosolids has come under increased scrutiny. To identify a way forward for the ongoing future use of biosolids-derived fertilisers in agriculture, the current work presents a critical review of: (1) contaminants of concern in biosolids and how regulatory approaches can address these to enable on-going beneficial reuse, (2) nutrient contents and bioavailability in biosolids to understand agronomic potential, (3) developments in extractive technologies to preserve and recover nutrients from biosolids before destructive dissipation when the biosolids are thermally processed to deal with persistent contaminants of concern (e.g. microplastics), and (4) use of the recovered nutrients, and the biochar produced by thermal processing, in novel organomineral fertilisers that match specific equipment, crop and soil requirements of broad-acre cropping. Several challenges were identified and recommendations for prioritisation of future research and development are provided to enable safe beneficial reuse of biosolids-derived fertilisers. Opportunities include more efficient technologies to preserve, extract and reuse nutrients from sewage sludge and biosolids, and the production of organomineral fertiliser products with characteristics that enable reliable widespread use across broad-acre agriculture.
Collapse
Affiliation(s)
- Serhiy Marchuk
- Centre for Agricultural Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Stephan Tait
- Centre for Agricultural Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Payel Sinha
- Centre for Agricultural Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Peter Harris
- Centre for Agricultural Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Diogenes L Antille
- Centre for Agricultural Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia; CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Bernadette K McCabe
- Centre for Agricultural Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia.
| |
Collapse
|
4
|
Mkhonza NP, Muchaonyerwa P, Buthelezi-Dube NN. Carbon dioxide emission, nitrogen mineralisation and spinach dry matter yield in a loamy humic soil amended with lime and poultry manure. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:110. [PMID: 35048201 DOI: 10.1007/s10661-021-09730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
While application of lime and poultry manure (PM) increase availability of mineral N in acidic humic soils (> 1.8% organic carbon), these amendments enhance decomposition of soil organic carbon (SOC) increasing carbon dioxide (CO2) emissions. This study investigated the effects of co-application of PM and lime on (i) CO2 emission, (ii) concentration of mineral-N and (iii) spinach dry matter yield and nutrient uptake in a humic soil. Two incubation experiments were set up for 84 days to determine (i) CO2 emission and (ii) mineral-N on soils from the 0-10- and 10-20-cm depths. The treatments were PM (10 t ha-1), lime (12 t ha-1), PM + lime and unamended control. Same treatments (with inclusion of inorganic fertilisers) were applied to a pot trial using soils (0-10-cm depth) that were pre-incubated for 0, 14 and 35 days before planting spinach, and dry matter yield and N uptake were determined. Co-application of PM and lime significantly decreased ammonium-N in soil at both depths but increased nitrate-N and CO2 emission than lime alone. Poultry manure significantly increased ammonium-N and CO2 emission at 0-10-cm depth. For all treatments, cumulative CO2-C was significantly higher at 0-10 cm. Dry matter yield for PM + lime and lime + mineral N was higher than when separately applied. Pre-incubation of soils with lime and PM, separately or in combination, increased dry matter yield. These findings imply that application of PM and lime in humic soils increases mineral-N availability and crop productivity, especially when pre-incubated for 35 days, whilst the increase in CO2 emission could result in the decrease of SOC.
Collapse
Affiliation(s)
- N P Mkhonza
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, P.O. Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
| | - P Muchaonyerwa
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, P.O. Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
| | - N N Buthelezi-Dube
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, P.O. Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| |
Collapse
|
5
|
Law JY, Long LA, Kaleita A, Helmers M, Brendel C, van der Woude K, Soupir M. Stacked conservation practices reduce nitrogen loss: A paired watershed study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114053. [PMID: 34741942 DOI: 10.1016/j.jenvman.2021.114053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Combinations of best management practices (BMPs) are needed to achieve nutrient reduction goals in the Mississippi/Atchafalaya River Basin (MARB), but field results are crucial to encourage stacked adoption of BMPs. A paired catchment-scale study (2015-18) was done to assess the impact of (i) BMPs, (ii) precipitation patterns, and (iii) seasonality on nitrogen (N) export. Flow-weighted samples were collected and analyzed for total ammonia nitrogen (TAN), nitrate (NO3-N), and total nitrogen (TN). Catchments Low-BMP 11 and High-BMP 12 had 27.6% and 87.6% areal coverage of BMPs, respectively. No significant difference (p > 0.05) in TAN concentrations was found between Low-BMP 11 (0.023 mg L-1) and High-BMP 12 (0.020 mg L-1). However, NO3-N and TN concentrations were significantly higher (p < 0.05) at Low-BMP 11 (NO3-N: 26.0 mg L-1, TN: 28.7 mg L-1) than at High-BMP 12 (NO3-N: 8.8 mg L-1, TN: 9.2 mg L-1). Two precipitation factors that affected N export patterns were observed. First, N flushing could continue for several years after a drought as elevated NO3-N concentrations were observed in 2015 (i.e., two years after the 2011-2013 drought). Second, higher annual N export was observed when more precipitation occurred during the pre-planting or early-growing season versus later periods. For both catchments, the highest 50% of flows were responsible for majority of the NO3-N export. We estimated that 33-37%, 61-62%, and 82-85% of the NO3-N loads occurred in the 90th, 75th, and 50th flow percentiles, respectively. As demonstrated in High-BMP 12, stacked BMP application effectively lowered NO3-N and TN loads by 60.3% and 59.1%, respectively, relative to Low-BMP 11. Although 27.6% BMP coverage area in Low-BMP 11 was considered low for this study, this coverage area is higher than many other parts of the MARB. This research highlights the importance of joint efforts between landowners in a watershed to meet downstream water quality goals.
Collapse
Affiliation(s)
- Ji Yeow Law
- Dep. of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Rd, Ames IA, 50011, USA.
| | - Leigh Ann Long
- Dep. of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Rd, Ames IA, 50011, USA
| | - Amy Kaleita
- Dep. of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Rd, Ames IA, 50011, USA
| | - Matthew Helmers
- Dep. of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Rd, Ames IA, 50011, USA
| | - Conrad Brendel
- Dep. of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Rd, Ames IA, 50011, USA; Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76, Norrköping, Sweden
| | - Katherine van der Woude
- Dep. of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Rd, Ames IA, 50011, USA; Dep. of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St. Golden, CO, 80401, USA
| | - Michelle Soupir
- Dep. of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Rd, Ames IA, 50011, USA
| |
Collapse
|
6
|
Farooq MS, Uzair M, Maqbool Z, Fiaz S, Yousuf M, Yang SH, Khan MR. Improving Nitrogen Use Efficiency in Aerobic Rice Based on Insights Into the Ecophysiology of Archaeal and Bacterial Ammonia Oxidizers. FRONTIERS IN PLANT SCIENCE 2022; 13:913204. [PMID: 35769304 PMCID: PMC9234532 DOI: 10.3389/fpls.2022.913204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 05/22/2023]
Abstract
The abundance and structural composition of nitrogen (N) transformation-related microbial communities under certain environmental conditions provide sufficient information about N cycle under different soil conditions. This study aims to explore the major challenge of low N use efficiency (NUE) and N dynamics in aerobic rice systems and reveal the agronomic-adjustive measures to increase NUE through insights into the ecophysiology of ammonia oxidizers. Water-saving practices, like alternate wetting and drying (AWD), dry direct seeded rice (DDSR), wet direct seeding, and saturated soil culture (SSC), have been evaluated in lowland rice; however, only few studies have been conducted on N dynamics in aerobic rice systems. Biological ammonia oxidation is majorly conducted by two types of microorganisms, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). This review focuses on how diversified are ammonia oxidizers (AOA and AOB), whose factors affect their activities and abundance under different soil conditions. It summarizes findings on pathways of N cycle, rationalize recent research on ammonia oxidizers in N-cycle, and thereby suggests adjustive agronomic measures to reduce N losses. This review also suggests that variations in soil properties significantly impact the structural composition and abundance of ammonia oxidizers. Nitrification inhibitors (NIs) especially nitrapyrin, reduce the nitrification rate and inhibit the abundance of bacterial amoA without impacting archaeal amoA. In contrast, some NIs confine the hydrolysis of synthetic N and, therefore, keep low NH4 +-N concentrations that exhibit no or very slight impact on ammonia oxidizers. Variations in soil properties are more influential in the community structure and abundance of ammonia oxidizers than application of synthetic N fertilizers and NIs. Biological nitrification inhibitors (BNIs) are natural bioactive compounds released from roots of certain plant species, such as sorghum, and could be commercialized to suppress the capacity of nitrifying soil microbes. Mixed application of synthetic and organic N fertilizers enhances NUE and plant N-uptake by reducing ammonia N losses. High salt concentration promotes community abundance while limiting the diversity of AOB and vice versa for AOA, whereas AOA have lower rate for potential nitrification than AOB, and denitrification accounts for higher N2 production. Archaeal abundance, diversity, and structural composition change along an elevation gradient and mainly depend on various soil factors, such as soil saturation, availability of NH4 +, and organic matter contents. Microbial abundance and structural analyses revealed that the structural composition of AOA was not highly responsive to changes in soil conditions or N amendment. Further studies are suggested to cultivate AOA and AOB in controlled-environment experiments to understand the mechanisms of AOA and AOB under different conditions. Together, this evaluation will better facilitate the projections and interpretations of ammonia oxidizer community structural composition with provision of a strong basis to establish robust testable hypotheses on the competitiveness between AOB and AOA. Moreover, after this evaluation, managing soils agronomically for potential utilization of metabolic functions of ammonia oxidizers would be easier.
Collapse
Affiliation(s)
- Muhammad Shahbaz Farooq
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Zubaira Maqbool
- Institute of Soil Science, Pir Mehr Ali Shah-Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | | | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
- *Correspondence: Seung Hwan Yang,
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
- Muhammad Ramzan Khan,
| |
Collapse
|
7
|
Li L, Konkel J, Jin VL, Schaeffer SM. Conservation management improves agroecosystem function and resilience of soil nitrogen cycling in response to seasonal changes in climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146457. [PMID: 34030284 DOI: 10.1016/j.scitotenv.2021.146457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Understanding how conservation agricultural management improves soil nitrogen (N) stability in the face of climate change can help increase agroecosystem productivity and mitigate runoff, leaching and downstream water quality issues. We conducted a 2-year field study in a 36-year-old rain-fed cotton production system to evaluate the impacts of changing climatic factors (temperature and precipitation) on soil N under conservation management, including moderate inorganic N fertilizer application (0 and 67 kg N ha-1), winter cover crops (fallow; winter wheat, Triticum aestivum L.; hairy vetch, Vicia villosa Roth), and reduced tillage (no-till; disk tillage). Structural equation modeling (SEM) was used to quantify and compare the effects of conservation management and climatic factors on soil N concentrations. Fertilizer and vetch cover crops increased soil total N concentration by 16% and 18%, respectively, and also increased microbial N transformation rate by 41% and 168%. In addition, vetch cover crops also increased soil labile N concentrations by 57%, 21%, and 79%, i.e., extractable organic N, ammonium, and nitrate, respectively. The highest soil δ15N value (6.4 ± 0.3‰) was observed under the 67 kg N ha-1 fertilizer-wheat-disk tillage treatment, and the lowest value (4.8 ± 0.3‰) under the zero-fertilizer-wheat-no-till treatment, indicating fertilizer and tillage might accelerate microbial N transformation. The SEM showed positive effects of temperature and precipitation on labile N concentrations, suggesting destabilization of soil N and the potential for soil N loss under increased temperature and intensified precipitation. Fertilizer and vetch use might mitigate some of the effects of temperature by accelerating microbial N transformations, with vetch having a larger effect than fertilizer (0.35 vs. 0.15, Table 1). No-till can reduce some of the effects of precipitation on soil labile N by maintaining soil structure. Our study suggests that fertilizer, vetch cover crop, and no-till might help improve function and resilience of agroecosystems in relation to soil N cycling. Soil N stabilization in cropping systems can be enhanced by adjusting agricultural management.
Collapse
Affiliation(s)
- Lidong Li
- University of Tennessee-Knoxville, Department of Biosystems Engineering and Soil Science, 2506 E. J. Chapman Drive, Knoxville, TN 37996, USA; USDA-ARS, Agroecosystem Management Research Unit, 251 Filley Hall, UNL-East Campus, Lincoln, NE 68583, USA.
| | - Julie Konkel
- University of Tennessee-Knoxville, Department of Biosystems Engineering and Soil Science, 2506 E. J. Chapman Drive, Knoxville, TN 37996, USA; Blount County Soil Conservation District, 1217 McArthur Rd, Maryville, TN 37804, USA
| | - Virginia L Jin
- USDA-ARS, Agroecosystem Management Research Unit, 251 Filley Hall, UNL-East Campus, Lincoln, NE 68583, USA
| | - Sean M Schaeffer
- University of Tennessee-Knoxville, Department of Biosystems Engineering and Soil Science, 2506 E. J. Chapman Drive, Knoxville, TN 37996, USA.
| |
Collapse
|
8
|
A Typological Concept to Predict the Nitrogen Release from Organic Fertilizers in Farming Systems. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prediction of nitrogen (N) mineralization or immobilization in organic fertilizers is an important tool to optimize fertilizer use, especially in intensive agricultural systems. Our aim was to derive a model to predict the N mineralization/immobilization from readily available information on the properties of organic fertilizers in farming practice. On the basis of a literature review, a characterization of organic fertilizers was performed, revealing a large variance in fertilizer properties within the defined categories and subcategories. A partial linear model was derived and used for the prediction of N mineralization/immobilization based on the type of fertilizer and the carbon (C) to organic nitrogen (Norg) ratio. Depending on the previously defined category, a strong mineralization (e.g., plant- and animal-based commercial fertilizers) or a predominant immobilization (e.g., compost and slurries) was detected. For a total of seven main categories and their subcategories, individual models were developed. This work shows that the mineralization properties of organic fertilizers can be sufficiently predicted through a simple classification into a fertilizer category and through the C to Norg ratio.
Collapse
|