1
|
Thakur A, Kumar A. Emerging paradigms into bioremediation approaches for nuclear contaminant removal: From challenge to solution. CHEMOSPHERE 2024; 352:141369. [PMID: 38342150 DOI: 10.1016/j.chemosphere.2024.141369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
The release of radionuclides, including Cesium-137 (137Cs), Strontium-90 (90Sr), Uranium-238 (238U), Plutonium-239 (239Pu), Iodine-131 (131I), etc., from nuclear contamination presents profound threats to both the environment and human health. Traditional remediation methods, reliant on physical and chemical interventions, often prove economically burdensome and logistically unfeasible for large-scale restoration efforts. In response to these challenges, bioremediation has emerged as a remarkably efficient, environmentally sustainable, and cost-effective solution. This innovative approach harnesses the power of microorganisms, plants, and biological agents to transmute radioactive materials into less hazardous forms. For instance, consider the remarkable capability demonstrated by Fontinalis antipyretica, a water moss, which can accumulate uranium at levels as high as 4979 mg/kg, significantly exceeding concentrations found in the surrounding water. This review takes an extensive dive into the world of bioremediation for nuclear contaminant removal, exploring sources of radionuclides, the ingenious resistance mechanisms employed by plants against these harmful elements, and the fascinating dynamics of biological adsorption efficiency. It also addresses limitations and challenges, emphasizing the need for further research and implementation to expedite restoration and mitigate nuclear pollution's adverse effects.
Collapse
Affiliation(s)
- Abhinay Thakur
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Kumar
- Nalanda College of Engineering, Bihar Engineering University, Science, Technology and Technical Education Department, Government of Bihar, 803108, India.
| |
Collapse
|
2
|
Doose C, Hubas C. The metabolites of light: Untargeted metabolomic approaches bring new clues to understand light-driven acclimation of intertidal mudflat biofilm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168692. [PMID: 38008320 DOI: 10.1016/j.scitotenv.2023.168692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
The microphytobenthos (MPB), a microbial community of primary producers, play a key role in coastal ecosystem functioning, particularly in intertidal mudflats. These mudflats experience challenging variations of irradiance, forcing the micro-organisms to develop photoprotective mechanisms to survive and thrive in this dynamic environment. Two major adaptations to light are well described in literature: the excess of light energy dissipation through non-photochemical quenching (NPQ), and the vertical migration in the sediment. These mechanisms trigger considerable scientific interest, but the biological processes and metabolic mechanisms involved in light-driven vertical migration remain largely unknown. To our knowledge, this study investigates for the first time metabolomic responses of a migrational mudflat biofilm exposed for 30 min to a light gradient of photosynthetically active radiation (PAR) from 50 to 1000 μmol photons m-2 s-1. The untargeted metabolomic analysis allowed to identify metabolites involved in two types of responses to light irradiance levels. On the one hand, the production of SFAs and MUFAs, primarily derived from bacteria, indicates a healthy photosynthetic state of MPB under low light (LL; 50 and 100 PAR) and medium light (ML; 250 PAR) conditions. Conversely, when exposed to high light (HL; 500, 750 and 1000 PAR), the MPB experienced light-induced stress, triggering the production of alka(e)nes and fatty alcohols. The physiological and ecological roles of these compounds are poorly described in literature. This study sheds new light on the topic, as it suggests that these compounds may play a crucial and previously unexplored role in light-induced stress acclimation of migrational MPB biofilms. Since alka(e)nes are produced from FAs decarboxylation, these results thus emphasize for the first time the importance of FAs pathways in microphytobenthic biofilms acclimation to light.
Collapse
Affiliation(s)
- Caroline Doose
- Muséum National d'Histoire Naturelle, UMR BOREA, MNHN-CNRS-UCN-UPMC-IRD-UA, Station Marine de Concarneau, Concarneau, France.
| | - Cédric Hubas
- Muséum National d'Histoire Naturelle, UMR BOREA, MNHN-CNRS-UCN-UPMC-IRD-UA, Station Marine de Concarneau, Concarneau, France.
| |
Collapse
|
3
|
Xin J, Hong C, Wei J, Qie J, Wang H, Lei B, Li X, Cai Z, Kang Q, Zeng Z, Liu Y. A comprehensive review of radioactive pollution treatment of uranium mill tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102104-102128. [PMID: 37684506 DOI: 10.1007/s11356-023-29401-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023]
Abstract
Natural uranium is a crucial resource for clean nuclear energy, which has brought significant economic and social benefits to humanity. However, the development and utilization of uranium resources have also resulted in the accumulation of vast amounts of uranium mill tailings (UMTs), which pose a potential threat to human health and the ecological environment. This paper reviews the research progress on UMTs treatment technologies, including cover disposal, solidification disposal, backfilling disposal, and bioremediation methods. It is found that cover disposal is a versatile method for the long-term management of UMTs, the engineering performance and durability of the cover system can be improved by choosing suitable stabilizers for the cover layer. Solidification disposal can convert UMTs into solid waste for permanent disposal, but it produces a large amount of waste and requires high operating costs; it is necessary to explore the effectiveness and efficiency of solidification disposal for UMTs, while minimizing the bad environmental impact. Backfilling disposal realizes the resource utilization of solid waste, but the high radon exhalation rate caused by the UMTs backfilling also needs to be considered. Bioremediation methods have low investment costs and are less likely to cause secondary pollution, but the remediation efficiency is low, it can be combined with other treatment technologies to remedy the defects of a single remediation method. The article concludes with key issues and corresponding suggestions for the current UMTs treatment methods, which can provide theoretical guidance and reference for further development and application of radioactive pollution treatment of UMTs.
Collapse
Affiliation(s)
- Jiayi Xin
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Changshou Hong
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China.
| | - Jia Wei
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Jingwen Qie
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Hong Wang
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Bo Lei
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Xiangyang Li
- School of Resources, Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Ziqi Cai
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Qian Kang
- School of Emergency Management and Safety Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhiwei Zeng
- Department of Radiological Medicine and Environmental Medicine, China Institute for Radiation Protection, Taiyuan, 030000, China
| | - Yong Liu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518061, China
| |
Collapse
|
4
|
Li Z, He Y, Sonne C, Lam SS, Kirkham MB, Bolan N, Rinklebe J, Chen X, Peng W. A strategy for bioremediation of nuclear contaminants in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120964. [PMID: 36584860 DOI: 10.1016/j.envpol.2022.120964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Radionuclides released from nuclear contamination harm the environment and human health. Nuclear pollution spread over large areas and the costs associated with decontamination is high. Traditional remediation methods include both chemical and physical, however, these are expensive and unsuitable for large-scale restoration. Bioremediation is the use of plants or microorganisms to remove pollutants from the environment having a lower cost and can be upscaled to eliminate contamination from soil, water and air. It is a cheap, efficient, ecologically, and friendly restoration technology. Here we review the sources of radionuclides, bioremediation methods, mechanisms of plant resistance to radionuclides and the effects on the efficiency of biological adsorption. Uptake of radionuclides by plants can be facilitated by the addition of appropriate chemical accelerators and agronomic management, such as citric acid and intercropping. Future research should accelerate the use of genetic engineering and breeding techniques to screen high-enrichment plants. In addition, field experiments should be carried out to ensure that this technology can be applied to the remediation of nuclear contaminated sites as soon as possible.
Collapse
Affiliation(s)
- Zhaolin Li
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yifeng He
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | - Nanthi Bolan
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, M079, Perth, WA, 6009, Australia
| | - Jörg Rinklebe
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation, Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Xiangmeng Chen
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
Fu Q, Lai JL, Li C, Ji XH, Luo XG. Phytotoxicity mechanism of the natural radionuclide thorium in Vicia faba. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127718. [PMID: 34815127 DOI: 10.1016/j.jhazmat.2021.127718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Elucidation of the phytotoxic mechanisms of thorium (Th) is important for controlling Th accumulation in crops and improving the efficiency of phytoremediation. Here, we analyzed the subcellular distribution of Th in Vicia faba seedlings and the toxic reaction of seedlings to Th (5-40 μmol·L-1) at the subcellular and cellular levels. Increasing the phosphate level in the culture medium from 0.01 to 0.1 mmol·L-1 decreased the Th accumulation by the roots by 47-57%. Th was mainly distributed in the root cell walls (94-96%) and existed mainly in the form of residue (92-94%). Th accumulation in the root was similar to the changes observed for P, Ni, Cu, and Fe. High concentrations of Th (40 μmol·L-1) induced abnormal root growth and leaf photosynthetic metabolism. At the cellular level, Th (40 μmol·L-1) induced root edge cell death and inhibited root respiration and cell mitosis. SOD, POD and CAT activities were involved in the regulation of reactive oxygen species accumulation in the roots. Untargeted metabolomics identified 580 and 262 differentially expressed metabolites in roots and leaves. At the metabolic level, its toxicological mechanism involved a severe inhibition of the expression of nucleotides in roots and leaves.
Collapse
Affiliation(s)
- Qian Fu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jin-Long Lai
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Chen Li
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723000, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiao-Hui Ji
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723000, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
6
|
Mohammed AAER. Potentiality of quercetin-sodium hydroxide modified Spirulina Platensis in uranium biosorption from waste effluent. INTERNATIONAL JOURNAL OF ENVIRONMENTAL STUDIES 2020; 77:48-60. [DOI: 10.1080/00207233.2019.1688988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
Montgomery DA, Edayilam N, Tharayil N, Powell BA, Martinez NE. The Uptake and Translocation of 99Tc, 133Cs, 237Np, and 238U Into Andropogon Virginicus With Consideration of Plant Life Stage. HEALTH PHYSICS 2018; 115:550-560. [PMID: 29878916 DOI: 10.1097/hp.0000000000000848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydroponic uptake studies were conducted to evaluate the uptake and translocation of Tc, Cs (stable analog for Cs), Np, and U into established and seedling Andropogon virginicus specimens under controlled laboratory conditions. Plant specimens were grown in analyte-spiked Hoagland nutrient solution for 24 h, 3 d, and 5 d. Translocation to shoots was greatest for Tc and Cs, likely due to their analogous nature to plant nutrients, while U (and Np to a lesser extent) predominantly partitioned to root tissue with less extensive translocation to the shoots. Plant age contributed significantly to differences in concentration ratios for all nuclides in shoot tissues (p ≤ 0.024), with higher concentration ratios for seedling specimens. Additionally, duration of exposure was associated with significant differences in concentration ratios of Cs and Tc for seedlings (p = 0.007 and p = 0.030, respectively) while plant part (root or shoot) was associated with significant differences in concentration ratios of established plants (p < 0.001 for both nuclides). Statistically significant increases in radionuclide uptake in seedling specimens relative to established plants under controlled conditions suggests that, in addition to geochemical factors, plant life stage of wild grasses may also be an important factor influencing radionuclide transport in the natural environment.
Collapse
Affiliation(s)
- Dawn A Montgomery
- Department of Environmental Engineering and Earth Science, Clemson University, 342 Computer Ct., Anderson, SC 29625
| | - Nimisha Edayilam
- Department of Plant and Environmental Science, 111 Biosystems Research Complex (BRC), Clemson University, Clemson, SC 29634
| | - Nishanth Tharayil
- Department of Plant and Environmental Science, 111 Biosystems Research Complex (BRC), Clemson University, Clemson, SC 29634
| | - Brian A Powell
- Department of Environmental Engineering and Earth Science, Clemson University, 342 Computer Ct., Anderson, SC 29625
| | - Nicole E Martinez
- Department of Environmental Engineering and Earth Science, Clemson University, 342 Computer Ct., Anderson, SC 29625
| |
Collapse
|
8
|
Mazari K, Landa P, Přerostová S, Müller K, Vaňková R, Soudek P, Vaněk T. Thorium impact on tobacco root transcriptome. JOURNAL OF HAZARDOUS MATERIALS 2017; 325:163-169. [PMID: 27931000 DOI: 10.1016/j.jhazmat.2016.11.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
Thorium is natural actinide metal with potential use in nuclear energetics. Contamination by thorium, originated from mining activities or spills, represents environmental risk due to its radioactivity and chemical toxicity. A promising approach for cleaning of contaminated areas is phytoremediation, which need to be based, however, on detail understanding of the thorium effects on plants. In this study we investigated transcriptomic response of tobacco roots exposed to 200μM thorium for one week. Thorium application resulted in up-regulation of 152 and down-regulation of 100 genes (p-value <0.01, fold change ≥2). The stimulated genes were involved in components of jasmonic acid and salicylic acid signaling pathways and various abiotic (e.g. oxidative stress) and biotic stress (e.g. pathogens, wounding) responsive genes. Further, up-regulation of phosphate starvation genes and down-regulation of genes involved in phytic acid biosynthesis indicated that thorium disturbed phosphate uptake or signaling. Also expression of iron responsive genes was influenced. Negative regulation of several aquaporins indicated disturbance of water homeostasis. Genes potentially involved in thorium transport could be zinc-induced facilitator ZIF2, plant cadmium resistance PCR2, and ABC transporter ABCG40. This study provides the first insight at the processes in plants exposed to thorium.
Collapse
Affiliation(s)
- Kateřina Mazari
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6, Lysolaje, Czechia; Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6, Suchdol, 165 21, Czechia
| | - Přemysl Landa
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6, Lysolaje, Czechia
| | - Sylva Přerostová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6, Lysolaje, Czechia; Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czechia
| | - Karel Müller
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6, Lysolaje, Czechia
| | - Radomíra Vaňková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6, Lysolaje, Czechia
| | - Petr Soudek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6, Lysolaje, Czechia
| | - Tomáš Vaněk
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i., Rozvojová 263, 165 02 Prague 6, Lysolaje, Czechia.
| |
Collapse
|
9
|
Huang Z, Tang S, Zhang L, Ma L, Ding S, Du L, Zhang D, Jin Y, Wang R, Huang C, Xia C. Interaction between U and Th on their uptake, distribution, and toxicity in V S. alfredii based on the phytoremediation of U and Th. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:2996-3005. [PMID: 27848132 DOI: 10.1007/s11356-016-8037-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Variant Sedum alfredii Hance (V S. alfredii) could simultaneously take up U and Th from water with the highest concentrations recorded as 1.84 × 104 and 6.72 × 103 mg/kg in the roots, respectively. Th stimulated U uptake by V S. alfredii roots at Th10 (10 μM of Th), however, the opposite was observed at Th100 (100 μM of Th). A similar result was found in the effect of U on the uptake of Th by V S. alfredii. Subcellular fractionation studies of V S. alfredii indicated that U and Th were mainly stored in cell wall fraction, and much less was found in organelle and soluble fractions. Chemical form examination results showed that water-soluble U and Th were the predominant chemical forms in this plant. Addition of the other radionuclide in aqueous solutions altered the concentration and percentage of U or Th in cell wall fraction and in water-soluble form, resulting in the change of the uptake capacity of U or Th by V S. alfredii roots. Comparing with single U or Th treatment, the plant cells revealed more swollen chloroplasts and enhanced thickening in cell walls under the U100 + Th100 treatment, as observed by TEM. Those results collectively displayed that V S. alfredii may be utilized as a potential plant to simultaneously remove U and Th from aqueous solutions (rhizofiltration).
Collapse
Affiliation(s)
- Zhenling Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Siqun Tang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lu Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lijian Ma
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Songdong Ding
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Liang Du
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Dong Zhang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Yongdong Jin
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China.
| | - Chao Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Chuanqin Xia
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
10
|
Sasmaz M, Obek E, Sasmaz A. Bioaccumulation of Uranium and Thorium by Lemna minor and Lemna gibba in Pb-Zn-Ag Tailing Water. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:832-837. [PMID: 27663445 DOI: 10.1007/s00128-016-1929-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
This study focused on the ability of Lemna minor and Lemna gibba to remove U and Th in the tailing water of Keban, Turkey. These plants were placed in tailing water and individually fed to the reactors designed for these plants. Water and plant samples were collected daily from the mining area. The plants were ashed at 300°C for 1 day and analyzed by ICP-MS for U and Th. U was accumulated as a function of time by these plants, and performances between 110 % and 483 % for L. gibba, and between 218 % and 1194 % for L. minor, were shown. The highest Th accumulations in L. minor and L. gibba were observed at 300 % and 600 % performances, respectively, on the second day of the experiment. This study indicated that both L. gibba and L. minor demonstrated a high ability to remove U and Th from tailing water polluted by trace elements.
Collapse
Affiliation(s)
- Merve Sasmaz
- Department of Environmental Engineering, Firat University, 23119, Elazığ, Turkey
| | - Erdal Obek
- Department of Bioengineering, Firat University, 23119, Elazığ, Turkey
| | - Ahmet Sasmaz
- Department of Bioengineering, Firat University, 23119, Elazığ, Turkey.
- Department of Geological Engineering, Firat University, 23119, Elazığ, Turkey.
| |
Collapse
|
11
|
Zhou S, Kai H, Zha Z, Fang Z, Wang D, Du L, Zhang D, Feng X, Jin Y, Xia C. Subcellular distribution and chemical forms of thorium in Brassica juncea var. foliosa. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 157:60-66. [PMID: 27010411 DOI: 10.1016/j.jenvrad.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 06/05/2023]
Abstract
Brassica juncea var. foliosa (B. juncea var. foliosa) is a promising species for thorium (Th) phytoextraction due to its large biomass, fast growth rate and high tolerance toward Th. To further understand the mechanisms of Th tolerance, the present study investigated the subcellular distribution and chemical forms of Th found in B. juncea var. foliosa Our results indicated that in both roots and leaves, Th contents in different parts of the cells follow the order of cell wall > membranes and soluble fraction > organelles. In particular, Transmission Electron Microscope (TEM) analysis showed that Th was abundantly located in cell walls of the roots. Additionally, when plants were exposed to different concentrations of Th, we have found that Th existed in B. juncea var. foliosa with different chemical forms. Much of the Th extracted by 2% acetic acid (HAc), 1 M NaCl and HCl in roots with the percentage distribution varied from 47.2% to 62.5%, while in leaves, most of the Th was in the form of residue and the subdominant amount of Th was extracted by HCl, followed by 2% HAc. This suggested that Th compartmentation in cytosol and integration with phosphate or proteins in cell wall might be responsible for the tolerance of B. juncea var. foliosa to the stress of Th.
Collapse
Affiliation(s)
- Sai Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hailu Kai
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhongyong Zha
- Logistic Engineering University, Chongqing 401311, China
| | - Zhendong Fang
- Logistic Engineering University, Chongqing 401311, China
| | - Dingna Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Liang Du
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Dong Zhang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xiaojie Feng
- Logistic Engineering University, Chongqing 401311, China.
| | - Yongdong Jin
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Chuanqin Xia
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|