1
|
Fan YY, Chu C, Zhang YT, Zhao K, Liang LX, Huang JW, Zhou JX, Guo LH, Wu LY, Lin LZ, Liu RQ, Feng W, Dong GH, Zhao X. Environmental pollutant pre- and polyfluoroalkyl substances are associated with electrocardiogram parameters disorder in adults. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131832. [PMID: 37336106 DOI: 10.1016/j.jhazmat.2023.131832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/14/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
Environmental pollutants exposure might disrupt cardiac function, but evidence about the associations of per- and polyfluoroalkyl substances (PFASs) exposure and cardiac conduction system remains sparse. To explore the associations between serum PFASs exposure and electrocardiogram (ECG) parameters changes in adults, we recruited 1229 participants (mean age: 55.1 years) from communities of Guangzhou, China. 13 serum PFASs with detection rate > 85% were analyzed finally. We selected 6 ECG parameters [heart rate (HR), PR interval, QRS duration, Bazett heart rate-corrected QT interval (QTc), QRS electric axis and RV5 + SV1 voltage] as outcomes. Generalized linear models (GLMs) and Bayesian kernel machine regression (BKMR) model were conducted to explore the associations of individual and joint PFASs exposure and ECG parameters changes, respectively. We detected significant associations of PFASs exposure with decreased HR, QRS duration, but with increased PR interval. For example, at the 95th percentile of 6:2 Cl-PFESA, HR and QRS duration were - 6.98 [95% confidence interval (CI): - 9.07, - 4.90] and - 6.54(95% CI: -9.05, -4.03) lower, but PR interval was 7.35 (95% CI: 3.52, 11.17) longer than those at the 25th percentile. Similarly, significant joint associations were observed in HR, PR interval and QRS duration when analyzed by BKMR model.
Collapse
Affiliation(s)
- Yuan-Yuan Fan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Guangdong Cardiovascular Institute, Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yun-Ting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Kun Zhao
- Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Li-Xia Liang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Wen Huang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jia-Xin Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Hao Guo
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lu-Yin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenru Feng
- Department of Environmental Health, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiaomiao Zhao
- Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
2
|
Blumenthal J, Diamond ML, Hoffmann M, Wang Z. Time to Break the "Lock-In" Impediments to Chemicals Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3863-3870. [PMID: 35306812 PMCID: PMC8988302 DOI: 10.1021/acs.est.1c06615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Despite enormous national, regional, and global efforts on chemical management, the widespread use of hazardous chemicals continues in many parts of the world even after decades of there being well-known risks to public and/or ecosystem health. This continued supply and use, despite strong evidence of negative impacts, is not unique to chemicals management. In the field of climate change, the concept of "lock-in" has been used to explain the complex interactions among economic, social, technological, and political dynamics that reinforce global reliance on the extraction and use of fossil fuels. Learning from carbon "lock-in" phenomena, this Perspective explores the challenges of chemicals management from the perspective of lock-in through three case studies: paraquat, perfluorooctanesulfonic acid (PFOS), and asbestos. These case studies illustrate that most current chemicals management frameworks fail to address the concerns arising from this complex interplay by not involving all relevant stakeholder groups that are part of lock-in, from producers to consumers. This results in a relatively narrow consideration (e.g., only demand but not supply) of the effectiveness and consequences of regulations. We submit that to break lock-in and address the global threat of chemical pollution, current approaches to managing hazardous chemicals should be broadened to take a comprehensive approach to understanding and managing factors contributing to lock-in, notably both supply and demand on national and international scales.
Collapse
Affiliation(s)
- Jonathan Blumenthal
- Department
of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| | - Miriam L. Diamond
- Department
of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
- School
of the Environment, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| | - Matthew Hoffmann
- Department
of Political Science, University of Toronto, Toronto, Ontario M5S 3G3, Canada
- Munk
School of Global Affairs and Public Policy, University of Toronto, Toronto, Ontario M5S 0A7, Canada
| | - Zhanyun Wang
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
- Empa
−
Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014 St. Gallen, Switzerland
- E-mail: ,
| |
Collapse
|
3
|
Ghisi R, Vamerali T, Manzetti S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. ENVIRONMENTAL RESEARCH 2019; 169:326-341. [PMID: 30502744 DOI: 10.1016/j.envres.2018.10.023] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 05/27/2023]
Abstract
PFASs are a class of compounds that include perfluoroalkyl and polyfluoroalkyl substances, some of the most persistent pollutants still allowed - or only partially restricted - in several product fabrications and industrial applications worldwide. PFASs have been shown to interact with blood proteins and are suspected of causing a number of pathological responses, including cancer. Given this threat to living organisms, we carried out a broad review of possible sources of PFASs and their potential accumulation in agricultural plants, from where they can transfer to humans through the food chain. Analysis of the literature indicates a direct correlation between PFAS concentrations in soil and bioaccumulation in plants. Furthermore, plant uptake largely changes with chain length, functional group, plant species and organ. Low accumulations of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) have been found in peeled potatoes and cereal seeds, while short-chain compounds can accumulate at high levels in leafy vegetables and fruits. Significant variations in PFAS buildup in plants according to soil amendment are also found, suggesting a particular interaction with soil organic matter. Here, we identify a series of challenges that PFASs pose to the development of a safe agriculture for future generations.
Collapse
Affiliation(s)
- Rossella Ghisi
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, Padua, Italy.
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, Padua, Italy
| | - Sergio Manzetti
- Fjordforsk A/S, Institute for Science and Technology, Midtun 6894, Vangsnes, Norway; Uppsala Centre for Computational Sciences, Dept. of Cell & Molec. Biol., Uppsala University, Box 596, 75124 Uppsala, Sweden
| |
Collapse
|
4
|
Weber R, Schlumpf M, Nakano T, Vijgen J. The need for better management and control of POPs stockpiles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:14385-90. [PMID: 26386851 DOI: 10.1007/s11356-015-5162-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 08/04/2015] [Indexed: 05/21/2023]
Affiliation(s)
- Roland Weber
- International HCH and Pesticides Association, Elmevej 14, DK-2840, Holte, Denmark.
- POPs Environmental Consulting, Lindenfirststr. 23, D-73527, Schwäbisch Gmünd, Germany.
| | - Margret Schlumpf
- GREEN Tox GmbH, Langackerstrasse 49, CH-8057, Zürich, Switzerland
| | - Takeshi Nakano
- Research Center for Environmental Preservation, Osaka University, Osaka, Japan
- Hyogo Environmental Advancement Association, Kobe-shi, Japan
| | - John Vijgen
- International HCH and Pesticides Association, Elmevej 14, DK-2840, Holte, Denmark.
| |
Collapse
|