1
|
Jin J, Zhao Y, Guo W, Wang B, Wang Y, Liu X, Xu C. Thiocoraline mediates drug resistance in MCF-7 cells via PI3K/Akt/BCRP signaling pathway. Cytotechnology 2019; 71:401-409. [PMID: 30689149 DOI: 10.1007/s10616-019-00301-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/19/2019] [Indexed: 01/17/2023] Open
Abstract
Thiocoraline, a depsipeptide bisintercalator with potent antitumor activity, was first isolated from marine actinomycete Micromonospora marina. It possesses an intense toxicity to MCF-7 cells at nanomolar concentrations in a dose-dependent manner evaluated by MTT assay and crystal violet staining. We established a human breast thiocoraline-resistant cancer subline of MCF-7/thiocoraline (MCF-7/T) to investigate the expression variation of breast cancer resistance proteins (BCRP) and its subsequent influence on drug resistance. Colony-forming assay showed that the MCF-7 cells proliferated faster than the MCF-7/T cells in vitro. Western blot analysis demonstrated that thiocoraline increased the phosphorylation of Akt. Additionally, the sensitivity of tumor cells to thiocoraline was reduced with a concurrent rise in phosphorylation level of Akt and of BCRP expression.These studies indicated that thiocoraline probably mediated the drug resistance via PI3K/Akt/BCRP signaling pathway. MK-2206 dihydrochloride, a selective phosphorylation inhibitor of Akt, significantly decreased MCF-7 cell viability under exposure to thiocoraline compared to the control. However, it was not obviously able to decrease MCF-7/T cell viability when cells were exposed to thiocoraline.
Collapse
Affiliation(s)
- Jin Jin
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, No. 2 Road Xiasha District, Hangzhou, 310018, China
| | - Yujia Zhao
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, No. 2 Road Xiasha District, Hangzhou, 310018, China
| | - Wan Guo
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, No. 2 Road Xiasha District, Hangzhou, 310018, China
| | - Bingrong Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, No. 2 Road Xiasha District, Hangzhou, 310018, China
| | - Yigang Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
| | - Xinyuan Liu
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chuanlian Xu
- College of Life Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China.
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, No. 2 Road Xiasha District, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Zeng J, Zhang Y, Ruan J, Yang Z, Wang C, Hong Z, Zuo Z. Protective effects of fucoxanthin and fucoxanthinol against tributyltin-induced oxidative stress in HepG2 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5582-5589. [PMID: 29222657 DOI: 10.1007/s11356-017-0661-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Tributyltin (TBT) is a biocide extremely toxic to a wide range of organisms, which has been used for decades for industrial purposes. Fucoxanthin is a natural carotenoid that is isolated from seaweed, and fucoxanthinol is a major primary metabolite of fucoxanthin. Although fucoxanthin and fucoxanthinol have been reported to possess anti-oxidant activities in vitro, little is known as to whether they protect against TBT-induced oxidative stress in cultured cells. In the present study, the protective effect of fucoxanthin and fucoxanthinol against oxidative stress induced by TBT was investigated. The data showed that incubation of HepG2 cells with 0.2 μM TBT significantly increased cell apoptosis, whereas treatment with fucoxanthin or fucoxanthinol (3 μM) significantly recovered cell viability. In addition, fucoxanthinol treatment significantly decreased the intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) in HepG2 cells incubated with TBT. Moreover, fucoxanthin and fucoxanthinol markedly increased the expression level of Bcl-2/Bax. These results demonstrated that both fucoxanthin and fucoxanthinol effectively prevented cytotoxicity in HepG2 cells treated with TBT, and the protective effect was likely associated with decreased intracellular ROS and MDA and increased Bcl-2/Bax levels.
Collapse
Affiliation(s)
- Jie Zeng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yiping Zhang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen, 361005, China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, 361102, China
| | - Jinpeng Ruan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhenggang Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chonggang Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhuan Hong
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen, 361005, China.
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, 361102, China.
| | - Zhenghong Zuo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|