1
|
Chen W, Liu Y, Chen J, Song Y, You M, Yang G. Long-term co-exposure DBP and BaP causes imbalance in liver macrophages polarization via activation of Notch signaling regulated by miR-34a-5p in rats. Chem Biol Interact 2022; 359:109919. [PMID: 35378083 DOI: 10.1016/j.cbi.2022.109919] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022]
Abstract
Humans are often exposed to complex mixtures of environmental pollutants over long periods of time. It is reported that Dibutyl phthalate (DBP) and benzo[a]pyrene (BaP) are typical environmental pollutants, which are associated with liver injury. Nevertheless, little is known about the effects of DBP and BaP combined exposure on liver. In the current study, rats were exposed to DBP alone (50, or 250 mg/kg), BaP alone (1, or 5 mg/kg), or DBP and BaP (50 + 1, or 250 + 5 mg/kg) for ninety days. More serious liver damage, including abnormal liver function, infiltration of inflammatory cells and disturbed secretion of inflammatory factors, were observed in long-term co-exposure to DBP and BaP group relative to those in single exposure group. Our data showed that long-term co-exposure to DBP and BaP induces macrophages to polarize toward M1 and inhibits polarization of M2 macrophages. Long-term co-exposure to DBP and BaP downregulated miR-34a-5p level and upregulated Notch signaling. These results indicated that imbalance in macrophages M1/M2 polarization mediated by activation of Notch signaling due to reduced miR-34a-5p level may contribute to additive effects on disorder of inflammatory factors secretion and subsequent liver injury following long-term DBP and BaP co-exposure.
Collapse
Affiliation(s)
- Wenyan Chen
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yining Liu
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jing Chen
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yawen Song
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Mingdan You
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China.
| | - Guanghong Yang
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China; Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
2
|
Herruzo-Ruiz AM, Fuentes-Almagro CA, Jiménez-Pastor JM, Pérez-Rosa VM, Blasco J, Michán C, Alhama J. Meta-omic evaluation of bacterial microbial community structure and activity for the environmental assessment of soils: overcoming protein extraction pitfalls. Environ Microbiol 2021; 23:4706-4725. [PMID: 34258847 DOI: 10.1111/1462-2920.15673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 11/27/2022]
Abstract
Microorganisms play unique, essential and integral roles in the biosphere. This work aims to assess the utility of soil's metaomics for environmental diagnosis. Doñana National Park (DNP) was selected as a natural lab since it contains a strictly protected core that is surrounded by numerous threats of pollution. Culture-independent high-throughput molecular tools were used to evaluate the alterations of the global structure and metabolic activities of the microbiome. 16S rRNA sequencing shows lower bacterial abundance and diversity in areas historically exposed to contamination that surround DNP. For metaproteomics, an innovative post-alkaline protein extraction protocol was developed. After NaOH treatment, successive washing with Tris-HCl buffer supplemented with glycerol was essential to eliminate interferences. Starting from soils with different physicochemical characteristics, the method renders proteins with a remarkable resolution on SDS-PAGE gels. The proteins extracted were analysed by using an in-house database constructed from the rRNA data. LC-MS/MS analysis identified 2182 non-redundant proteins with 135 showing significant differences in relative abundance in the soils around DNP. Relevant global biological processes were altered in response to the environmental changes, such as protective and antioxidant mechanisms, translation, folding and homeostasis of proteins, membrane transport and aerobic respiratory metabolism.
Collapse
Affiliation(s)
- Ana M Herruzo-Ruiz
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| | | | - José M Jiménez-Pastor
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| | - Víctor M Pérez-Rosa
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, Puerto Real, E-11510, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| | - José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, E-14071, Spain
| |
Collapse
|
3
|
Pimentel-Acosta CA, Ramírez-Salcedo J, Morales-Serna FN, Fajer-Ávila EJ, Chávez-Sánchez C, Lara HH, García-Gasca A. Molecular Effects of Silver Nanoparticles on Monogenean Parasites: Lessons from Caenorhabditis elegans. Int J Mol Sci 2020; 21:ijms21165889. [PMID: 32824343 PMCID: PMC7460582 DOI: 10.3390/ijms21165889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
The mechanisms of action of silver nanoparticles (AgNPs) in monogenean parasites of the genus Cichlidogyrus were investigated through a microarray hybridization approach using genomic information from the nematode Caenorhabditis elegans. The effects of two concentrations of AgNPs were explored, low (6 µg/L Ag) and high (36 µg/L Ag). Microarray analysis revealed that both concentrations of AgNPs activated similar biological processes, although by different mechanisms. Expression profiles included genes involved in detoxification, neurotoxicity, modulation of cell signaling, reproduction, embryonic development, and tegument organization as the main biological processes dysregulated by AgNPs. Two important processes (DNA damage and cell death) were mostly activated in parasites exposed to the lower concentration of AgNPs. To our knowledge, this is the first study providing information on the sub-cellular and molecular effects of exposure to AgNPs in metazoan parasites of fish.
Collapse
Affiliation(s)
- Citlalic A. Pimentel-Acosta
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
| | - Jorge Ramírez-Salcedo
- Unidad de Microarreglos, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico;
| | - Francisco Neptalí Morales-Serna
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
- CONACYT, Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico
| | - Emma J. Fajer-Ávila
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
| | - Cristina Chávez-Sánchez
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
| | - Humberto H. Lara
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Alejandra García-Gasca
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
- Correspondence: ; Tel.: +52-66-9989-8700
| |
Collapse
|
4
|
Morales-Prieto N, López de Lerma N, Pacheco IL, Huertas-Abril PV, Pérez J, Peinado R, Abril N. Protective effect of Pedro-Ximénez must against p,p'-DDE-induced liver damages in aged Mus spretus mice. Food Chem Toxicol 2020; 136:110984. [DOI: 10.1016/j.fct.2019.110984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
|
5
|
Becker DJ, Albery GF, Kessler MK, Lunn TJ, Falvo CA, Czirják GÁ, Martin LB, Plowright RK. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J Anim Ecol 2020; 89:972-995. [PMID: 31856309 DOI: 10.1111/1365-2656.13166] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/06/2019] [Indexed: 01/26/2023]
Abstract
The prevalence and intensity of parasites in wild hosts varies across space and is a key determinant of infection risk in humans, domestic animals and threatened wildlife. Because the immune system serves as the primary barrier to infection, replication and transmission following exposure, we here consider the environmental drivers of immunity. Spatial variation in parasite pressure, abiotic and biotic conditions, and anthropogenic factors can all shape immunity across spatial scales. Identifying the most important spatial drivers of immunity could help pre-empt infectious disease risks, especially in the context of how large-scale factors such as urbanization affect defence by changing environmental conditions. We provide a synthesis of how to apply macroecological approaches to the study of ecoimmunology (i.e. macroimmunology). We first review spatial factors that could generate spatial variation in defence, highlighting the need for large-scale studies that can differentiate competing environmental predictors of immunity and detailing contexts where this approach might be favoured over small-scale experimental studies. We next conduct a systematic review of the literature to assess the frequency of spatial studies and to classify them according to taxa, immune measures, spatial replication and extent, and statistical methods. We review 210 ecoimmunology studies sampling multiple host populations. We show that whereas spatial approaches are relatively common, spatial replication is generally low and unlikely to provide sufficient environmental variation or power to differentiate competing spatial hypotheses. We also highlight statistical biases in macroimmunology, in that few studies characterize and account for spatial dependence statistically, potentially affecting inferences for the relationships between environmental conditions and immune defence. We use these findings to describe tools from geostatistics and spatial modelling that can improve inference about the associations between environmental and immunological variation. In particular, we emphasize exploratory tools that can guide spatial sampling and highlight the need for greater use of mixed-effects models that account for spatial variability while also allowing researchers to account for both individual- and habitat-level covariates. We finally discuss future research priorities for macroimmunology, including focusing on latitudinal gradients, range expansions and urbanization as being especially amenable to large-scale spatial approaches. Methodologically, we highlight critical opportunities posed by assessing spatial variation in host tolerance, using metagenomics to quantify spatial variation in parasite pressure, coupling large-scale field studies with small-scale field experiments and longitudinal approaches, and applying statistical tools from macroecology and meta-analysis to identify generalizable spatial patterns. Such work will facilitate scaling ecoimmunology from individual- to habitat-level insights about the drivers of immune defence and help predict where environmental change may most alter infectious disease risk.
Collapse
Affiliation(s)
- Daniel J Becker
- Department of Biology, Indiana University, Bloomington, IN, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Tamika J Lunn
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Caylee A Falvo
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Lynn B Martin
- Department of Global and Planetary Health, University of South Florida, Tampa, FL, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
6
|
Morales-Prieto N, Huertas-Abril PV, López de Lerma N, Pacheco IL, Pérez J, Peinado R, Abril N. Pedro Ximenez sun-dried grape must: a dietary supplement for a healthy longevity. Food Funct 2020; 11:4387-4402. [DOI: 10.1039/d0fo00204f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sun-dried Pedro Ximénez white grapes must (PXM) is a potent antioxidant that regularizes apoptosis, proliferation, and regeneration of the structure and the function of aged mice liver. PXM consumption contributes to a healthy aging process.
Collapse
Affiliation(s)
- Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular
- Campus de Excelencia Internacional Agroalimentario CeiA3
- Universidad de Córdoba
- 14071 Córdoba
- Spain
| | - Paula V. Huertas-Abril
- Departamento de Bioquímica y Biología Molecular
- Campus de Excelencia Internacional Agroalimentario CeiA3
- Universidad de Córdoba
- 14071 Córdoba
- Spain
| | | | - Isabel. L. Pacheco
- Departamento de Anatomía y Anatomía Patológica Comparadas. Facultad de Veterinaria. Universidad de Córdoba
- 14071 Córdoba
- Spain
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas. Facultad de Veterinaria. Universidad de Córdoba
- 14071 Córdoba
- Spain
| | - Rafael Peinado
- Departamento de Química Agrícola
- Universidad de Córdoba
- 14071 Córdoba
- Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular
- Campus de Excelencia Internacional Agroalimentario CeiA3
- Universidad de Córdoba
- 14071 Córdoba
- Spain
| |
Collapse
|
7
|
Carvajal-Lopez P, Von Borstel FD, Torres A, Rustici G, Gutierrez J, Romero-Vivas E. Microarray-Based Quality Assessment as a Supporting Criterion for de novo Transcriptome Assembly Selection. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:198-206. [PMID: 30059314 DOI: 10.1109/tcbb.2018.2860997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
RNA-Sequencing and de novo assembly have enabled the analysis of species with non-available reference transcriptomes, although intrinsic features (biological and technical) induce errors in the reconstruction. A strategy to resolve these errors consists of varying assembling process parameters to generate multiple reconstructions. However, the best assembly selection remains a challenge. Quantitative metrics for quality assessment have been inconsistent when compared with pertinent references. In this paper, a criterion for supporting assembly selection based on mapping DNA microarray hybridized probes to assembly sets is proposed. Mouse and fruit fly RNA-Seq datasets were assembled with standard de novo procedures. Quality assessment was estimated using quantitative metrics and the proposed criterion. The assembly that best mapped to the available reference transcriptomes of these model species provided the highest quality assembly. The hybridized probes identified the best assemblies, whereas quantitative metrics remained inconsistent. For example, subtle probe mapping difference of 0.25 percent, but statistically significant (ANOVA, p < 0.05), enabled the assembly selection that led to identify 3,719 more contigs and led to 1,049 further mapped contigs to the mouse reference transcriptome. The microarray data availability for non-model species makes the proposed criterion suitable for quality assessment of multiple de novo assembly strategies.
Collapse
|
8
|
Michán C, Chicano-Gálvez E, Fuentes-Almagro CA, Alhama J. Redox and global interconnected proteome changes in mice exposed to complex environmental hazards surrounding Doñana National Park. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:427-439. [PMID: 31158671 DOI: 10.1016/j.envpol.2019.05.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Natural environments are receiving an increasing number of contaminants. Therefore, the evaluation and identification of early responses to pollution in these complex habitats is an urgent and challenging task. Doñana National Park (DNP, SW Spain) has been widely used as a model area for environmental studies because, despite its strictly protected core, it is surrounded by numerous threat sources from agricultural, mining and industrial activities. Since many pollutants often induce oxidative stress, redox proteomics was used to detect redox-based variations within the proteome of Mus spretus mice captured in DNP and the surrounding areas. Functional analysis showed that most differentially oxidized proteins are involved in the maintenance of homeostasis, by eliciting mechanisms to respond to toxic substances and oxidative stress, such as antioxidant and biotransformation processes, immune and inflammatory responses, and blood coagulation. Furthermore, changes in the overall protein abundance were also analysed by label-free quantitative proteomics. The upregulation of phase I and II biotransformation enzymes in mice from Lucio del Palacio may be an alert for organic pollution in the area located at the heart of DNP. Metabolic processes involved in protein turnover (proteolysis, amino acid catabolism, new protein biosynthesis and folding) were activated in response to oxidative damage to these biomolecules. Consequently, aerobic respiratory metabolism increased to address the greater ATP demands. Alterations of cholesterol metabolism that could cause hepatic steatosis were also detected. The proteomic detection of globally altered metabolic and physiological processes offers a complete view of the main biological changes caused by environmental pollution in complex habitats.
Collapse
Affiliation(s)
- Carmen Michán
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | | | | | - José Alhama
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain.
| |
Collapse
|
9
|
Quina AS, Durão AF, Muñoz-Muñoz F, Ventura J, da Luz Mathias M. Population effects of heavy metal pollution in wild Algerian mice (Mus spretus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:414-424. [PMID: 30639867 DOI: 10.1016/j.ecoenv.2018.12.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Heavy metal mining is one of the largest sources of environmental pollution. The analysis of different types of biomarkers in sentinel species living in contaminated areas provides a measure of the degree of the ecological impact of pollution and is thus a valuable tool for human and environmental risk assessments. In previous studies we found that specimens from two populations of the Algerian mice (Mus spretus) living in two abandoned heavy metal mines (Aljustrel and Preguiça, Portugal) had higher body burdens of heavy metals, which led to alterations in enzymatic activities and in haematological, histological and genotoxic parameters, than mice from a nearby reference population. We have now analysed individuals from the same sites at the biometric and genetic levels to get a broader portrayal of the impact of heavy metal pollution on biodiversity, from molecules to populations. Size and shape variations of the mouse mandible were searched by implementing the geometric morphometric method. Population genetic differentiation and diversity parameters (φST estimates; nucleotide and haplotype diversities) were studied using the mitochondrial cytochrome b gene (Cytb) and the control region (CR). The morphometric analyses revealed that animals from the three sites differed significantly in the shape of the mandible, but mandibular shape varied in a more resembling way within individuals of both mine sites, which is highly suggestive for an effect of environmental quality on normal development pathways in Algerian mice. Also, antisymmetry in mandible size and shape was detected in all populations, making these traits not reliable indicators of developmental instability. Overall little genetic differentiation was found among the three populations, although pairwise φST comparisons revealed that the Aljustrel and the Preguiça populations were each differentiated from the other two populations in Cytb and in CR, respectively. Genetic diversity parameters revealed higher genetic diversity for Cytb in the population from Aljustrel, while in the population from Preguiça diversity of the two markers changed in opposite directions, higher genetic diversity in CR and lower in Cytb, compared to the reference population. Demographic changes and increased mutation rates may explain these findings. We show that developmental patterns and genetic composition of wild populations of a small mammal can be affected by chronic heavy metal exposure within a relatively short time. Anthropogenic stress may thus influence the evolutionary path of natural populations, with largely unpredictable ecological costs.
Collapse
Affiliation(s)
- Ana Sofia Quina
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa (FCUL), Lisboa, Portugal; Centro de Estudos do Ambiente e do Mar - Lisboa (CESAM; FCUL), Lisboa, Portugal.
| | - Ana Filipa Durão
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa (FCUL), Lisboa, Portugal
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Maria da Luz Mathias
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa (FCUL), Lisboa, Portugal; Centro de Estudos do Ambiente e do Mar - Lisboa (CESAM; FCUL), Lisboa, Portugal
| |
Collapse
|
10
|
Kabir MF, Mohd Ali J, Haji Hashim O. Microarray gene expression profiling in colorectal (HCT116) and hepatocellular (HepG2) carcinoma cell lines treated with Melicope ptelefolia leaf extract reveals transcriptome profiles exhibiting anticancer activity. PeerJ 2018; 6:e5203. [PMID: 30042885 PMCID: PMC6054789 DOI: 10.7717/peerj.5203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
Background We have previously reported anticancer activities of Melicope ptelefolia (MP) leaf extracts on four different cancer cell lines. However, the underlying mechanisms of actions have yet to be deciphered. In the present study, the anticancer activity of MP hexane extract (MP-HX) on colorectal (HCT116) and hepatocellular carcinoma (HepG2) cell lines was characterized through microarray gene expression profiling. Methods HCT116 and HepG2 cells were treated with MP-HX for 24 hr. Total RNA was extracted from the cells and used for transcriptome profiling using Applied Biosystem GeneChip™ Human Gene 2.0 ST Array. Gene expression data was analysed using an Applied Biosystems Expression Console and Transcriptome Analysis Console software. Pathway enrichment analyses was performed using Ingenuity Pathway Analysis (IPA) software. The microarray data was validated by profiling the expression of 17 genes through quantitative reverse transcription PCR (RT-qPCR). Results MP-HX induced differential expression of 1,290 and 1,325 genes in HCT116 and HepG2 cells, respectively (microarray data fold change, MA_FC ≥ ±2.0). The direction of gene expression change for the 17 genes assayed through RT-qPCR agree with the microarray data. In both cell lines, MP-HX modulated the expression of many genes in directions that support antiproliferative activity. IPA software analyses revealed MP-HX modulated canonical pathways, networks and biological processes that are associated with cell cycle, DNA replication, cellular growth and cell proliferation. In both cell lines, upregulation of genes which promote apoptosis, cell cycle arrest and growth inhibition were observed, while genes that are typically overexpressed in diverse human cancers or those that promoted cell cycle progression, DNA replication and cellular proliferation were downregulated. Some of the genes upregulated by MP-HX include pro-apoptotic genes (DDIT3, BBC3, JUN), cell cycle arresting (CDKN1A, CDKN2B), growth arrest/repair (TP53, GADD45A) and metastasis suppression (NDRG1). MP-HX downregulated the expression of genes that could promote anti-apoptotic effect, cell cycle progression, tumor development and progression, which include BIRC5, CCNA2, CCNB1, CCNB2, CCNE2, CDK1/2/6, GINS2, HELLS, MCM2/10 PLK1, RRM2 and SKP2. It is interesting to note that all six top-ranked genes proposed to be cancer-associated (PLK1, MCM2, MCM3, MCM7, MCM10 and SKP2) were downregulated by MP-HX in both cell lines. Discussion The present study showed that the anticancer activities of MP-HX are exerted through its actions on genes regulating apoptosis, cell proliferation, DNA replication and cell cycle progression. These findings further project the potential use of MP as a nutraceutical agent for cancer therapeutics.
Collapse
Affiliation(s)
- Mohammad Faujul Kabir
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Johari Mohd Ali
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Onn Haji Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Morales-Prieto N, Ruiz-Laguna J, Sheehan D, Abril N. Transcriptome signatures of p,p´-DDE-induced liver damage in Mus spretus mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:150-167. [PMID: 29554563 DOI: 10.1016/j.envpol.2018.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/19/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
The use of DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) in some countries, although regulated, is contributing to an increased worldwide risk of exposure to this organochlorine pesticide or its derivative p,p'-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene]. Many studies have associated p,p'-DDE exposure to type 2 diabetes, obesity and alterations of the reproductive system, but their molecular mechanisms of toxicity remain poorly understood. We have addressed this issue by using commercial microarrays based on probes for the entire Mus musculus genome to determine the hepatic transcriptional signatures of p,p'-DDE in the phylogenetically close mouse species Mus spretus. High-stringency hybridization conditions and analysis assured reliable results, which were also verified, in part, by qRT-PCR, immunoblotting and/or enzymatic activity. Our data linked 198 deregulated genes to mitochondrial dysfunction and perturbations of central signaling pathways (kinases, lipids, and retinoic acid) leading to enhanced lipogenesis and aerobic glycolysis, inflammation, cell proliferation and testosterone catabolism and excretion. Alterations of transcript levels of genes encoding enzymes involved in testosterone catabolism and excretion would explain the relationships established between p,p´-DDE exposure and reproductive disorders, obesity and diabetes. Further studies will help to fully understand the molecular basis of p,p´-DDE molecular toxicity in liver and reproductive organs, to identify effective exposure biomarkers and perhaps to design efficient p,p'-DDE exposure counteractive strategies.
Collapse
Affiliation(s)
- Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Julia Ruiz-Laguna
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - David Sheehan
- College of Arts and Science, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| |
Collapse
|
12
|
Morales-Prieto N, Ruiz-Laguna J, Abril N. Dietary Se supplementation partially restores the REDOX proteomic map of M. spretus liver exposed to p,p ′-DDE. Food Chem Toxicol 2018; 114:292-301. [DOI: 10.1016/j.fct.2018.02.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/14/2018] [Accepted: 02/21/2018] [Indexed: 12/29/2022]
|
13
|
Morales-Prieto N, Abril N. REDOX proteomics reveals energy metabolism alterations in the liver of M. spretus mice exposed to p, p'-DDE. CHEMOSPHERE 2017; 186:848-863. [PMID: 28826133 DOI: 10.1016/j.chemosphere.2017.08.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/27/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
The toxicity induced by the pesticide 2,2-bis(p-chlorophenyl)-1,1,1,-trichloroethane (DDT) and its derivative 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) has been associated with mitochondrial dysfunction, uncoupling of oxidative phosphorylation and respiratory chain electron transport, intracellular ion imbalance, generation of reactive oxygen species and impairment of the antioxidant defense system. A disruption in the cellular redox status causes protein Cys-based regulatory shifts that influence the activity of many proteins and trigger signal transduction alterations. Here, we analyzed the ability of p,p'-DDE to alter the activities of hepatic antioxidants and glycolytic enzymes to investigate the oxidative stress generation in the liver of p,p'-DDE-fed M. spretus mice. We also determined the consequences of the treatment on the redox status in the thiol Cys groups. The data indicate that the liver of p,p'-DDE exposed mice lacks certain protective enzymes, and p,p'-DDE caused a metabolic reprogramming that increased the glycolytic rate and disturbed the metabolism of lipids. Our results suggested that the overall metabolism of the liver was altered because important signaling pathways are controlled by p,p'-DDE-deregulated proteins. The histological data support the proposed metabolic consequences of the p,p'-DDE exposure.
Collapse
Affiliation(s)
- Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, España, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, España, Spain.
| |
Collapse
|