1
|
He J, Tang M, Zhong F, Deng J, Li W, Zhang L, Lin Q, Xia X, Li J, Guo T. Current trends and possibilities of typical microbial protein production approaches: a review. Crit Rev Biotechnol 2024:1-18. [PMID: 38566484 DOI: 10.1080/07388551.2024.2332927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/17/2024] [Indexed: 04/04/2024]
Abstract
Global population growth and demographic restructuring are driving the food and agriculture sectors to provide greater quantities and varieties of food, of which protein resources are particularly important. Traditional animal-source proteins are becoming increasingly difficult to meet the demand of the current consumer market, and the search for alternative protein sources is urgent. Microbial proteins are biomass obtained from nonpathogenic single-celled organisms, such as bacteria, fungi, and microalgae. They contain large amounts of proteins and essential amino acids as well as a variety of other nutritive substances, which are considered to be promising sustainable alternatives to traditional proteins. In this review, typical approaches to microbial protein synthesis processes were highlighted and the characteristics and applications of different types of microbial proteins were described. Bacteria, fungi, and microalgae can be individually or co-cultured to obtain protein-rich biomass using starch-based raw materials, organic wastes, and one-carbon compounds as fermentation substrates. Microbial proteins have been gradually used in practical applications as foods, nutritional supplements, flavor modifiers, and animal feeds. However, further development and application of microbial proteins require more advanced biotechnological support, screening of good strains, and safety considerations. This review contributes to accelerating the practical application of microbial proteins as a promising alternative protein resource and provides a sustainable solution to the food crisis facing the world.
Collapse
Affiliation(s)
- JinTao He
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Min Tang
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - FeiFei Zhong
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Changsha Institute for Food and Drug Control, Changsha, China
| | - Jing Deng
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Wen Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Lin Zhang
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - QinLu Lin
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xu Xia
- Huaihua Academy of Agricultural Sciences, Huaihua, China
| | - Juan Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Ting Guo
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
2
|
Pillaca-Pullo OS, Lopes AM, Estela-Escalante WD. Reusing wastewater from Coffea arabica processing to produce single-cell protein using Candida sorboxylosa: Optimizing of culture conditions. Biotechnol Prog 2024; 40:e3393. [PMID: 37792408 DOI: 10.1002/btpr.3393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/24/2023] [Accepted: 09/17/2023] [Indexed: 10/05/2023]
Abstract
Coffee is a crop of significant socioeconomic importance, and the reuse of agri-food by-products and biowaste has great potential across several industries. Coffee wastewater (CWW) is a valuable resource containing essential nutrients that can be utilized by Candida sorboxylosa for single-cell protein (SCP) production. This utilization contributes to mitigating the negative impacts of agro-industrial waste. The optimization of culture conditions using the design of experiments (DoE) technique is crucial in understanding the environmental factors influencing metabolite production. In our study, the DoE technique was employed to analyze culture conditions, including room temperature, pH 8.4, agitation at 200 rpm, a headspace of 60% (v/v), and an inoculum of 0.75 DO600nm over 28-h period. This approach resulted in a remarkable SCP yield of 64.4% and dry cell weight (DCW) of 2.26 g/L. It is noteworthy that there is no literature reporting SCP production under alkaline pH conditions in yeast. Interestingly, our work demonstrated that an alkaline pH of 8.4 significantly influenced SCP production by C. sorboxylosa. The DoE technique proved to be an efficient statistical tool for optimizing culture conditions, offering several advantages, such as: (i) conducting cultures at room temperature to minimize unnecessary energy consumption; (ii) reducing the incubation time from 46 to 28 h, thereby enhancing overall productivity; (iii) achieving 1.7-fold increase in SCP yield compared to previous basal production levels.
Collapse
Affiliation(s)
- Omar Santiago Pillaca-Pullo
- Facultad de Química e Ingeniería Química, Laboratorio de Bioprocesos y Tecnología de Fermentación, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - André Moreni Lopes
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo (EEL/USP), Lorena, Brazil
| | - Waldir D Estela-Escalante
- Facultad de Química e Ingeniería Química, Laboratorio de Bioprocesos y Tecnología de Fermentación, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
3
|
Bhattacharyya K, Bhattacharjee N, Ganguly S. Evidences for the augmented Cd(II) biosorption by Cd(II) resistant strain Candida tropicalis XTA1874 from contaminated aqueous medium. Sci Rep 2023; 13:12034. [PMID: 37491499 PMCID: PMC10368703 DOI: 10.1038/s41598-023-38485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
Cadmium is one of the most dreadful heavy metals and is becoming a major toxicant in ground water with increasing concentration above the WHO Guidelines in drinking water (0.003 mg/L). The potential sources of cadmium include sewage sludge, phosphate fertilizers and ingredients like Ni-Cd batteries, pigments, plating and plastics. Cadmium levels are increased in water owing to the use and disposal of cadmium containing ingredients. Water draining from a landfill may contain higher cadmium levels. The authors have tried to evaluate the optimized nutritional conditions for the optimal growth and Cd(II) remediation capacity for a developed Cd(II) resistant yeast strain named Candida tropicalis XTA 1874 isolated from contaminated water-body in West Bengal. By analyzing the optimization conditions, a synthetic medium was developed and the composition has been given in the main text. The strain showed much better Cd(II) adsorption capacity under the optimized nutritional conditions (Mean removal = 88.077 ± 0.097%).
Collapse
Affiliation(s)
- Kaustav Bhattacharyya
- Department of Physiology, Vidyasagar College, 39-Sankar Ghosh Lane, Kolkata, West Bengal, 700006, India
| | - Neelanjan Bhattacharjee
- Department of Mechanical Engineering, University of Alberta, Room 4-31F, 9211 116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Subhadeep Ganguly
- Department of Physiology, Vidyasagar College, 39-Sankar Ghosh Lane, Kolkata, West Bengal, 700006, India.
| |
Collapse
|
4
|
Lertsriwong S, Boonvitthya N, Glinwong C. Schwanniomyces etchellsii, acid-thermotolerant yeasts from urban city soil. World J Microbiol Biotechnol 2023; 39:159. [PMID: 37067620 DOI: 10.1007/s11274-023-03602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/02/2023] [Indexed: 04/18/2023]
Abstract
Acid-tolerant yeasts are one of the important keys to producing ethanol from acidic substrates, especially from molasses and agricultural waste. In this study, selected cultivars of yeasts isolated from a variety of locations such as botanical gardens in Thailand urban areas, which are often found highly polluted in the air such as carbon dioxide which is a cause of acid rain. There is limited information about how tolerant yeasts, are or their functional properties related to the environment. Yeast species were determined by using the 18S rDNA sequence guide. The level of acid tolerance was evaluated by adding to the culture medium lactic acid (300-900 mM), acetic acid (100-400 mM), and propionic acid (25-100 mM). 18S rDNA analysis has shown a %similarity of the nucleotide sequence higher than 98.65% compared to the database. Schwanniomyces etchellsii strains found in urban city soil were notable for their tolerance of lactic acid up to 100 mM. There are two main types of yeasts in overall acid tolerance: S. etchellsii, which is recognized as an osmotic pressure-resistant species that is highly resistant to fermentation inhibitors and produces ethanol; and Schizosaccharomyces pombe, which cell wall has been reported to be characterized by accumulation of α-(1,3)-glucan and malic acid can be used in metabolic pathways. The results show that S. pombe, isolated from rice paddy fields, can grow efficiently in acetic and propionic acid up to 400 mM and 100 mM, respectively. This species could be cultured in ethanol at a concentration of 12.5% (v/v). Moreover, it presented high ethanol and acetic acid production of 14.5-15.9 g/L and 7-10 g/L, respectively, with or without acidic conditions. In comparison, S. etchellsii, isolated from the botanical garden soil, which is grown in acetic, propionic, and lactic acid, was also indicated to be an organic acid-tolerant species.
Collapse
Affiliation(s)
- Supattra Lertsriwong
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Biofuels By Biocatalysts Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Chompunuch Glinwong
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
- Biofuels By Biocatalysts Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
5
|
Cardozo F, Feitosa V, Pillaca-Pullo O, Pessoa A. Endochitinase and Chitobiosidase Production by Marine Aeromonas caviae CHZ306: Establishment of Nitrogen Supplementation. Bioengineering (Basel) 2023; 10:bioengineering10040431. [PMID: 37106618 PMCID: PMC10136300 DOI: 10.3390/bioengineering10040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/31/2023] Open
Abstract
Aeromonas caviae CHZ306, a marine-derived bacterium isolated from zooplankton, can use chitin (a polymer of a β-(1,4)-linked N-acetyl-D-glucosamine) as a carbon source. The chitin is hydrolyzed by chitinolytic enzymes, namely endochitinases and exochitinases (chitobiosidase and N-acetyl-glucosaminidase). Indeed, the chitinolytic pathway is initiated by the coexpression of the enzymes endochitinase (EnCh) and chitobiosidase (ChB); however, few studies, including biotechnological production of these enzymes, have been reported, although chitosaccharide are helpful in several industries, such as cosmetics. This study demonstrates the potential to maximize the simultaneous EnCh and ChB production by nitrogen supplementation on culture media. Twelve different nitrogen supplementation sources (inorganic and organic) previously analyzed in elemental composition (carbon and nitrogen) were tested and evaluated in the Erlenmeyer flask culture of A. caviae CHZ306 for EnCh and ChB expression. None of the nutrients inhibited bacterial growth, and the maximum activity in both EnCh and ChB was observed at 12 h, using corn-steep solids and peptone A. Corn-steep solids and peptone A were then combined at three ratios (1:1, 1:2, and 2:1) to maximize the production. The high activities for EnCh (30.1 U.L−1) and ChB (21.3 U.L−1) were obtained with 2:1 corn-steep solids and peptone A, corresponding to more than 5- and 3-fold enhancement, respectively, compared to the control condition.
Collapse
Affiliation(s)
- Flavio Cardozo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo 05508-000, Brazil
- Correspondence:
| | - Valker Feitosa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Universidade de São Paulo (USP), São Paulo 05508-000, Brazil
- Departamento de Medicina e Enfermagem, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, Brazil
| | - Omar Pillaca-Pullo
- Centro de Investigación en Biodiversidad para la Salud, Universidad Privada Norbert Wiener, Lima 15046, Peru
| | - Adalberto Pessoa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Universidade de São Paulo (USP), São Paulo 05508-000, Brazil
| |
Collapse
|
6
|
Bouhia Y, Hafidi M, Ouhdouch Y, El Boukhari MEM, El Fels L, Zeroual Y, Lyamlouli K. Microbial Community Succession and Organic Pollutants Removal During Olive Mill Waste Sludge and Green Waste Co-composting. Front Microbiol 2022; 12:814553. [PMID: 35265049 PMCID: PMC8899611 DOI: 10.3389/fmicb.2021.814553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Olive mill wastewater sludge (OMWS) is the main by-product of the olive industry. OMWS is usually dumped in landfills without prior treatment and may cause several eco-environmental hazards due to its high toxicity, which is mainly attributed to polyphenols and lipids. OMWS is rich in valuable biocompounds, which makes it highly desirable for valorization by composting. However, there is a need to understand how microbial communities evolve during OMWS composting with respect to physicochemical changes and the dynamics of pollutant degradation. In this study, we addressed the relationship between microbial community, physicochemical variations and pollutants degradation during the co-composting of OMWS and green wastes using metagenomic- and culture-dependent approaches. The results showed that in raw OMWS, Pichia was the most represented genus with almost 53% of the total identified fungal population. Moreover, the bacteria that dominated were Zymobacter palmae (20%) and Pseudomonas sp. (19%). The addition of green waste to OMWS improved the actinobacterial diversity of the mixture and enhanced the degradation of lipids (81.3%) and polyphenols (84.54%). Correlation analysis revealed that Actinobacteria and fungi (Candida sp., Galactomyces sp., and Pichia manshurica) were the microorganisms that had the greatest influence on the composting process. Overall, these findings provide for the first time some novel insights into the microbial dynamics during OMWS composting and may contribute to the development of tailored inoculum for process optimization.
Collapse
Affiliation(s)
- Youness Bouhia
- Laboratory of Microbial Biotechnology, Agrosciences and Environment, Labelled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco.,Biodiversity and Plant Sciences Program, AgroBioSciences Department, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Mohamed Hafidi
- Laboratory of Microbial Biotechnology, Agrosciences and Environment, Labelled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco.,Biodiversity and Plant Sciences Program, AgroBioSciences Department, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Yedir Ouhdouch
- Laboratory of Microbial Biotechnology, Agrosciences and Environment, Labelled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco.,Biodiversity and Plant Sciences Program, AgroBioSciences Department, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Mohammed El Mehdi El Boukhari
- Laboratory of Microbial Biotechnology, Agrosciences and Environment, Labelled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco.,Biodiversity and Plant Sciences Program, AgroBioSciences Department, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Loubna El Fels
- Laboratory of Microbial Biotechnology, Agrosciences and Environment, Labelled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | | | - Karim Lyamlouli
- Biodiversity and Plant Sciences Program, AgroBioSciences Department, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| |
Collapse
|
7
|
Jach ME, Serefko A, Ziaja M, Kieliszek M. Yeast Protein as an Easily Accessible Food Source. Metabolites 2022; 12:63. [PMID: 35050185 PMCID: PMC8780597 DOI: 10.3390/metabo12010063] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, the awareness and willingness of consumers to consume healthy food has grown significantly. In order to meet these needs, scientists are looking for innovative methods of food production, which is a source of easily digestible protein with a balanced amino acid composition. Yeast protein biomass (single cell protein, SCP) is a bioavailable product which is obtained when primarily using as a culture medium inexpensive various waste substrates including agricultural and industrial wastes. With the growing population, yeast protein seems to be an attractive alternative to traditional protein sources such as plants and meat. Moreover, yeast protein biomass also contains trace minerals and vitamins including B-group. Thus, using yeast in the production of protein provides both valuable nutrients and enhances purification of wastes. In conclusion, nutritional yeast protein biomass may be the best option for human and animal nutrition with a low environmental footprint. The rapidly evolving SCP production technology and discoveries from the world of biotechnology can make a huge difference in the future for the key improvement of hunger problems and the possibility of improving world food security. On the market of growing demand for cheap and environmentally clean SCP protein with practically unlimited scale of production, it may soon become one of the ingredients of our food. The review article presents the possibilities of protein production by yeast groups with the use of various substrates as well as the safety of yeast protein used as food.
Collapse
Affiliation(s)
- Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Anna Serefko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki Street 4a, 20-093 Lublin, Poland;
| | - Maria Ziaja
- Institute of Physical Culture Studies, Medical College, University of Rzeszów, Cicha Street 2a, 35-326 Rzeszów, Poland;
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159C, 02-776 Warsaw, Poland
| |
Collapse
|
8
|
Zhou P, Zhang L, Ding H, Gao X, Chen Y, Li D. Optimization of culture conditions of screened Galactomyces candidum for the production of single cell protein from biogas slurry. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Catheter-Related Sepsis by Candida pararugosa in an Adult Patient under Chemotherapy Regimen. Case Rep Infect Dis 2021; 2021:8858157. [PMID: 33747582 PMCID: PMC7954637 DOI: 10.1155/2021/8858157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 01/19/2021] [Accepted: 02/28/2021] [Indexed: 11/28/2022] Open
Abstract
Candida pararugosa is present in animals and humans in different organs and biological liquids, usually as a saprophyte. We report the case of a 61-year-old woman diagnosed with de novo stage IV metastatic lobular breast cancer, carrying a central venous catheter (port-a-cath) and bilateral stents for perirenal infiltration by malignancy. During chemotherapy regimen, a febrile episode occurred, along with a high level of serum glucan. The port-a-cath was removed after blood collection for culture, which gave isolation of Candida pararugosa strains. Given high glucan level and the patient's frailty, empirical treatment with fluconazole was started with load-dose, 800 mg orally, at day 1 and, afterwards, with 400 mg daily for two weeks. The phenotype of susceptibility to antibiotics of the strain demonstrated lower minimal inhibitory concentration to fluconazole than that reported in the literature. The patient remained asymptomatic, and inflammation parameters showed normalization. Unfortunately, three weeks later, meningeal localization of cancer caused rapid deterioration and death.
Collapse
|
10
|
Candida tropicalis as a Promising Oleaginous Yeast for Olive Mill Wastewater Bioconversion. ENERGIES 2021. [DOI: 10.3390/en14030640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Olive mill wastewater (OMW), which is generated during olive oil production, has detrimental effects on the environment due to its high organic load and phenolic compounds content. OMW is difficult to biodegrade, but represents a valuable resource of nutrients for microbial growth. In this study, yeast strains were screened for their growth on phenolic compounds usually found in OMW and responsible for antimicrobial effects. Candida tropicalis ATCC 750 demonstrated an extraordinary capacity to grow in phenolics and was chosen for further experiments with OMW-based medium. The effects of nitrogen supplementation, the pH, and the stirring rate on cellular growth, OMW-components consumption, and added-value compounds production were studied in batch cultures in Erlenmeyer flasks and in a bioreactor. Candida tropicalis was able to reduce 68% of the organic load (chemical oxygen demand) and 39% of the total phenols of OMW in optimized conditions in bioreactor experiments, producing lipase (203 U·L−1) and protease (1105 U·L−1). Moreover, intracellular lipids were accumulated, most significantly under nitrogen-limited conditions, which is common in this type of wastewater. The high potential of C. tropicalis to detoxify OMW and produce added-value compounds from it makes this process an alternative approach to other conventional processes of OMW treatment.
Collapse
|
11
|
Shabbir MA, Ahmed W, Khan MR, Ahmad T, Aadil RM. Revitalization of wastewater from the edible oil industry. VALORIZATION OF AGRI-FOOD WASTES AND BY-PRODUCTS 2021:645-663. [DOI: 10.1016/b978-0-12-824044-1.00028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Improved Production of Kynurenic Acid by Yarrowia lipolytica in Media Containing Different Honeys. SUSTAINABILITY 2020. [DOI: 10.3390/su12229424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Y. lipolytica remains a nonpathogenic, unconventional yeast, which can be applied for the production of bioactive compounds. Our previous study confirmed the ability of yeast Yarrowia lipolytica to produce kynurenic acid (KYNA). Here, we investigated the effectiveness of KYNA production in cultures cultivated in medium containing honey of various origin, used as a source of carbon and energy. It was evidenced that the highest content of KYNA in culture broth (68 mg/L) and yeast biomass (542 mg/kg) was obtained when chestnut honey was used. The content of lipids and amino acids composition in yeast biomass producing KYNA was also determined. It was found that the composition of both amino acids and lipids in yeast biomass depended on the honey type used as a component of the medium. This finding revealed that supplementation of medium broth with honey may significantly affect the nutritional value of yeast biomass. The practical applicability of this finding requires further study.
Collapse
|
13
|
New Insights on Protein Recovery from Olive Oil Mill Wastewater through Bioconversion with Edible Filamentous Fungi. Processes (Basel) 2020. [DOI: 10.3390/pr8101210] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Olive oil mills represent an important sector in the Mediterranean Sea Basin but also an environmental hazard due to untreated wastewater. Recovery of nutrients from olive oil mill wastewater (OMWW) as protein-rich microbial biomass can produce novel feed and reduce its chemical oxygen demand; however, low-protein containing products have been reported. New strategies leading to higher protein-containing fungal biomass could renew the research interest on bioconversion for pollution mitigation of OMWW. In this work, through cultivation of edible filamentous fungi (Aspergillus oryzae, Neurospora intermedia, and Rhizopus delemar), a link between the protein content in the originated fungal biomass, and the addition of nitrogen and medium dilution was established. Addition of nitrogen in the form of NaNO3 reduced the cultivation time from 96 h to 48 h while achieving a similar biomass mass concentration of 8.43 g/L and increased biomass protein content, from w = 15.9% to w = 29.5%. Nitrogen addition and dilution of OMWW, and consequent reduction of suspended solids, led to an increase in the protein content to up to w = 44.9%. To the best of our knowledge, the protein contents achieved are the highest reported to date and can open new research avenues towards bioconversion of OMWW using edible filamentous fungi.
Collapse
|
14
|
Utilization of wastewater from edible oil industry, turning waste into valuable products: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Deeba F, Pruthi V, Negi YS. Aromatic hydrocarbon biodegradation activates neutral lipid biosynthesis in oleaginous yeast. BIORESOURCE TECHNOLOGY 2018; 255:273-280. [PMID: 29428782 DOI: 10.1016/j.biortech.2018.01.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 05/15/2023]
Abstract
In this study, the biodegradation ability of oleaginous yeast Cryptococcus psychrotolerans IITRFD for aromatic hydrocarbons (AHs) was investigated. It was found to completely degrade range of AHs such as 1 g/L phenol, 0.75 g/L naphthalene, 0.50 g/L anthracene and 0.50 g/L pyrene with lipid productivity (g/L/h) of 0.0444, 0.0441, 0.0394 and 0.0383, respectively. This work demonstrated the ring cleavage pathways of AHs by this yeast which follow ortho route for phenol and naphthalene while meta route for anthracene and pyrene degradation. The end products generated during biodegradation of AHs are feed as precursors for de novo triacylglycerols (TAG) biosynthesis pathway of oleaginous yeast. A high quantity of lipid content (46.54%) was observed on phenol as compared to lipid content on naphthalene (46.38%), anthracene (44.97%) and pyrene (44.16%). The lipid profile revealed by GC-MS analysis shows elevated monounsaturated fatty acid (MUFA) content with improved biodiesel quality.
Collapse
Affiliation(s)
- Farha Deeba
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Yuvraj S Negi
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
16
|
Processing, Valorization and Application of Bio-Waste Derived Compounds from Potato, Tomato, Olive and Cereals: A Review. SUSTAINABILITY 2017. [DOI: 10.3390/su9081492] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6232793. [PMID: 28367444 PMCID: PMC5358476 DOI: 10.1155/2017/6232793] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 11/25/2022]
Abstract
Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.
Collapse
|