1
|
Hao W, Xu X, Qiu G, Dong X, Zhu F, Han J, Liang L, Chen Z. Predictive modeling of methylmercury in rice (Oryza sativa L.) and species-sensitivity-distribution-based derivation of the threshold of soil mercury in karst mountain areas. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:157. [PMID: 38592345 DOI: 10.1007/s10653-024-01944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
The bioavailable mercury (Hg) in the soil is highly active and can affect the formulation of methyl-Hg (MeHg) in soil and its accumulation in rice. Herein, we predicted the concentration of MeHg in rice using bioavailable Hg extracted from soils; additionally, we determined the threshold value of soil Hg in karst mountain areas based on species sensitivity distribution. The bioavailable Hg was extracted using calcium chloride, hydrochloric acid (HCl), diethylenetriaminepentaacetic acid mixture, ammonium acetate, and thioglycolic acid. Results showed that HCl is the best extractant, and the prediction model demonstrated good predictability of the MeHg concentration in rice based on the HCl-extractable Hg, pH, and soil organic matter (SOM) data. Compared with the actual MeHg concentration in rice, approximately 99% of the predicted values (n = 103) were within the 95% prediction range, indicating the good performance of the rice MeHg prediction model based on soil pH, SOM, and bioavailable Hg in karst mountain areas. Based on this MeHg prediction model, the safety threshold of soil Hg was calculated to be 0.0936 mg/kg, which is much lower than the soil pollution risk screening value of agricultural land (0.5 mg/kg), suggesting that a stricter standard should be applied regarding soil Hg in karst mountain areas. This study presents the threshold of soil Hg pollution for rice safety in karst mountain areas, and future studies should target this threshold range.
Collapse
Affiliation(s)
- Wanbin Hao
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550025, China
| | - Xiaohang Xu
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xian Dong
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550025, China
| | - Fang Zhu
- Guiyang Healthcare Vocational University, Guiyang, 550081, China
| | - Jialiang Han
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, Guizhou, China
| | - Longchao Liang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550025, China.
| | - Zhuo Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Li C, Li Y, Cheng H, Jiang C, Zheng L. Remediation of Soil Mercury by Modified Vermiculite-Montmorillonite and Its Effect on the Growth of Brassica chinensis L. Molecules 2022; 27:5340. [PMID: 36014576 PMCID: PMC9416574 DOI: 10.3390/molecules27165340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
In this study, the surface of vermiculite-montmorillonite was modified by MnO2 loading. The modified vermiculite-montmorillonite was added to remediate the potentially toxic trace element (PTE) Hg present in soil containing coal gangue. Pot experiments were conducted to analyze and compare the pH values, Hg contents and Hg species present in coal gangue-containing soil, with and without the modified materials added, to determine whether the addition of modified materials had an effect on the growth of Brassica chinensis L. Results showed that with the addition of 35 g·kg-1 modified vermiculite-montmorillonite, the pH of soil increased by a value of 0.79, compared with that in the control group. When 15 g·kg-1 was added, the concentration of Hg in soil decreased by 98.2%. The addition of modified materials promoted the transformation of Hg in soil from a bioavailable form to an unavailable form; that is, the content of the residual form increased. The plant height and biomass of Brassica chinensis L. also increased, which indicated that the addition of modifiers can increase soil productivity, reduce the effects of PTEs on organisms in soil, and promote plant growth. Therefore, the addition of modified vermiculite-montmorillonite can achieve remediation of coal gangue-containing soil.
Collapse
Affiliation(s)
- Chang Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| | - Yuchen Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| | - Hua Cheng
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| | - Chunlu Jiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, China
| |
Collapse
|
3
|
Xu J, Bland GD, Gu Y, Ziaei H, Xiao X, Deonarine A, Reible D, Bireta P, Hoelen TP, Lowry GV. Impacts of Sediment Particle Grain Size and Mercury Speciation on Mercury Bioavailability Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12393-12402. [PMID: 34505768 DOI: 10.1021/acs.est.1c03572] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Particle-specific properties, including size and chemical speciation, affect the reactivity of mercury (Hg) in natural systems (e.g., dissolution or methylation). Here, terrestrial, river, and marine sediments were size-fractionated and characterized to correlate particle-specific properties of Hg-bearing solids with their bioavailability potential and measured biomethylation. Marine sediments contained ∼20-50% of the total Hg in the <0.5 μm size fraction, compared to only 0.5 and 3.0% in this size fraction for terrestrial and river sediments, respectively. X-ray absorption spectroscopy (XAS) analysis indicated that metacinnabar (β-HgS) was the main mercury species in a marine sediment, whereas organic Hg-thiol (Hg(SR)2) was the main mercury species in a terrestrial sediment. Single-particle inductively coupled plasma time-of-flight mass spectrometry analysis of the marine sediment suggests that half of the Hg in the <0.5 μm size fraction existed as individual nanoparticles, which were β-HgS based on XAS analyses. Glutathione-extractable mercury was higher for samples containing Hg(SR)2 species than β-HgS species and correlated well with the amount of Hg biomethylation. This particle-scale understanding of how Hg speciation and particle size affect mercury bioavailability potential helps explain the heterogeneity in Hg methylation in natural sediments.
Collapse
Affiliation(s)
- Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nanotechnology, Pittsburgh, Pennsylvania 15213, United States
| | - Garret D Bland
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nanotechnology, Pittsburgh, Pennsylvania 15213, United States
| | - Yuan Gu
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Hasti Ziaei
- Department of Civil, Environmental, & Construction Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Xiaoyue Xiao
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Amrika Deonarine
- Department of Civil, Environmental, & Construction Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Danny Reible
- Department of Civil, Environmental, & Construction Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Paul Bireta
- Chevron Technical Center (a Chevron U.S.A. Inc. Division), San Ramon, California 94583, United States
| | - Thomas P Hoelen
- Chevron Technical Center (a Chevron U.S.A. Inc. Division), San Ramon, California 94583, United States
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nanotechnology, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Higueras PL, Jiménez-Ballesta R, Esbrí JM, García-Giménez R, García-Noguero EM, Álvarez R, Peco JD, García-Noguero C, Campos JA. Occurrence and environmental constraints of gray monazite in red soils from the Campo de Montiel area (SW Ciudad Real province, south central Spain). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4573-4584. [PMID: 32946058 DOI: 10.1007/s11356-020-10827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Monazite ((Ce, La, Nd, Th) PO4) is a rare and strategic mineral that occurs naturally as an accessory and minor mineral in diverse igneous and metamorphic rocks. This mineral does not frequently form mineable ore deposits and it has different typologies, including those formed by endogenous processes (generally "yellow monazite" mineralizations) and those formed by exogenous processes ("gray monazite" mineralizations). The mineral is an important ore of Rare Earth Elements (REEs), which have been identified by the European Union as critical raw materials. Monazite can be considered a weathering-resistant mineral, and the mobility of the REE and associated elements is low. The study reported here concerns a mineralogical and geochemical assessment of the occurrence and risks associated with the presence of concentrations of monazite in a typical, well-developed, and representative red Mediterranean soil, in order to establish the associated risk with their future mining. The results confirmed that monazite ore is particularly poor in radioactive elements, and it is concentrated in the most surficial soil horizons. The chemical mobility of REEs present in the soil, as assessed by selective extraction with ammonium acetate in acidic media, follows the order Y > Dy > U > Tb > Gd > Eu > Sm > La > Th > Ce. The mobility of REEs contained in monazite proved to be higher than that of the REE compounds in the upper horizons of the soil profile suggesting the immobilization in other REE-containing minerals, while light REEs show lower mobility rates than heavy REEs, due to an immobilization of LREE by sorption with iron oxy-hydroxides. Further studies are required in order to obtain better speciation data for REEs in soils aimed to identify soluble and insoluble compounds.
Collapse
Affiliation(s)
- Pablo León Higueras
- Instituto de Geología Aplicada, Universidad de Castilla-La Mancha, Pl. Manuel Meca 1, 13400, Almadén, Ciudad Real, Spain.
| | - Raimundo Jiménez-Ballesta
- Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - José Maria Esbrí
- Instituto de Geología Aplicada, Universidad de Castilla-La Mancha, Pl. Manuel Meca 1, 13400, Almadén, Ciudad Real, Spain
| | - Rosario García-Giménez
- Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Eva María García-Noguero
- Instituto de Geología Aplicada, Universidad de Castilla-La Mancha, Pl. Manuel Meca 1, 13400, Almadén, Ciudad Real, Spain
| | - Rodrigo Álvarez
- Departamento de Explotación y Prospección de Minas, Escuela de Ingeniería de Minas, Energía y Materiales, Universidad de Oviedo, C/Independencia, 13, 33004, Oviedo, Spain
| | - Jesús Daniel Peco
- ETS Ingenieros Agrónomos de Ciudad Real, Instituto de Geología Aplicada, UCLM, Ronda de Calatrava s/n, 13003, Ciudad Real, Spain
| | - Carolina García-Noguero
- Instituto de Geología Aplicada, Universidad de Castilla-La Mancha, Pl. Manuel Meca 1, 13400, Almadén, Ciudad Real, Spain
| | - Juan Antonio Campos
- ETS Ingenieros Agrónomos de Ciudad Real, Instituto de Geología Aplicada, UCLM, Ronda de Calatrava s/n, 13003, Ciudad Real, Spain
| |
Collapse
|
5
|
Huang JH, Shetaya WH, Osterwalder S. Determination of (Bio)-available mercury in soils: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114323. [PMID: 32311621 DOI: 10.1016/j.envpol.2020.114323] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Despite the mercury (Hg) control measures adopted by the international community, Hg still poses a significant risk to ecosystem and human health. This is primarily due to the ability of atmospheric Hg to travel intercontinentally and contaminating terrestrial and aquatic environments far from its natural and anthropogenic point sources. The issue of Hg pollution is further complicated by its unique physicochemical characteristics, most noticeably its multiple chemical forms that vary in their toxicity and environmental mobility. This meant that most of the risk evaluation protocols developed for other metal(loid)s are not suitable for Hg. Soil is a major reservoir of Hg and a key player in its global cycle. To fully assess the risks of soil Hg it is essential to estimate its bioavailability and/or availability which are closely linked to its toxicity. However, the accurate determination of the (bio)-available pools of Hg in soils is problematic, because the terms 'bioavailable' and 'available' are ill-defined. In particular, the term 'bioavailable pool', representing the fraction of Hg that is accessible to living organisms, has been consistently misused by interchanging with other intrinsically different terms e.g. mobile, labile, reactive and soluble pools. A wide array of physical, chemical, biological and isotopic exchange methods were developed to estimate the (bio)-available pools of Hg in soil in an attempt to offer a plausible assessment of its risks. Unfortunately, many of these methods do not mirror the (bio)-available pools of soil Hg and suffer from technical drawbacks. In this review, we discuss advantages and disadvantages of methods that are currently applied to quantify the (bio)-availability of Hg in soils. We recommended the most feasible methods and give suggestions how to improve the determination of (bio)-available Hg in soils.
Collapse
Affiliation(s)
- Jen-How Huang
- Environmental Geosciences, University of Basel, CH-4056, Basel, Switzerland.
| | - Waleed H Shetaya
- Air Pollution Research Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Stefan Osterwalder
- Environmental Geosciences, University of Basel, CH-4056, Basel, Switzerland
| |
Collapse
|
6
|
Rodríguez L, Alonso-Azcárate J, Gómez R, Rodríguez-Castellanos L. Comparison of extractants used for the assessment of mercury availability in a soil from the Almadén mining district (Spain). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12963-12970. [PMID: 28374201 DOI: 10.1007/s11356-017-8828-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
Single extraction methods have been extensively used to assess the availability of metals in polluted soils. This work focused on checking the feasibility of several chemicals, i.e. CaCl2, EDTA, diethylenetriaminepentaacetic acid (DTPA) and a low-molecular-weight organic acid mixture (rhizosphere-based method), to be used as extractants for mercury (Hg) in a soil from the Almadén mining district (Spain). Moreover, the effect of several experimental parameters, i.e. extraction time (0.5, 1, 2, 5, 16 and 24 h), concentration of extractant (0.01, 0.05, 0.1 and 1 M) and soil/extractant ratio (1:2, 1:5 and 1:10), on the amount of Hg extracted was investigated. The Hg extraction ability followed the descending order EDTA > rhizosphere-based method > DTPA ≈ CaCl2. This ranking was attributed to the higher complexation power of EDTA and organic acids. It was also found that extraction times between 2 and 5 h are required to avoid underestimation of mobile Hg and re-adsorption of the Hg previously extracted. Although some exceptions were found, Hg extraction efficiency was generally enhanced with higher extractant concentrations. Finally, the amount of Hg extracted by the four extractants increased with decreasing soil/extractant ratios.
Collapse
Affiliation(s)
- Luis Rodríguez
- Department of Chemical Engineering, School of Civil Engineering, University of Castilla-La Mancha, Avenida Camilo José Cela, s/n, 13071, Ciudad Real, Spain.
| | - Jacinto Alonso-Azcárate
- Department of Physical Chemistry, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III, s/n, 45071, Toledo, Spain
| | - Rocío Gómez
- Department of Chemical Engineering, School of Civil Engineering, University of Castilla-La Mancha, Avenida Camilo José Cela, s/n, 13071, Ciudad Real, Spain
| | - Laura Rodríguez-Castellanos
- Department of Chemical Engineering, School of Civil Engineering, University of Castilla-La Mancha, Avenida Camilo José Cela, s/n, 13071, Ciudad Real, Spain
| |
Collapse
|